جمهورية العراق وزارة التربية المديرية العامة للتعليم المهني

شبكات الحاسوب

فرع الحاسوب وتقنية المعلومات الختصاصي تجميع وصيانة الحاسوب الشائى الثانى

المؤلفون

د. سها محمد هادي فيان إسماعيل

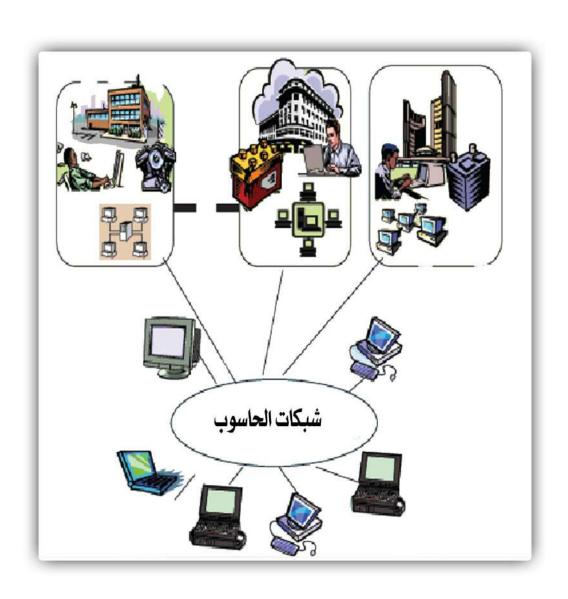
د. محمود شكر محمود أحمد فارس عبود

د. أياد غازي ناصر فادية نوري حمادي

الطبعة السادسة

بسم الله الرحمن الرحيم

المقدمة


يُعَدُ الحاسوب الآلي السمة المميزة لعصرنا الحديث نظراً للأهمية التي احتلها في مختلف التطبيقات العلمية والتجارية وما حققه من تقدم وتطور بسرعة مذهلة. لذا أصبحت الحاجة إلى استحداث أقسام وفروع علمية جديدة تواكب هذا التطور ورفدها بالمصادر العلمية والكتب المنهجية الحديثة أمراً ضرورياً يتماشى مع التطور الذي يشهده القطر العراقي في هذه المرحلة.

ومن هذا المنطق فقد شرعت المديرية العامة للتعليم المهني في وزارة التربية في قطرنا إلى استحداث فروع وأقسام علمية جديدة مثل فرع الحاسوب والمعلوماتية بجميع الأقسام فضلاً عن تشكيل اللجان العلمية المختصة لوضع المناهج العلمية الحديثة لهذه الأقسام لتواكب التطور العلمي الحاصل في هذا المجال، ولتدريب وتأهيل ملاكات وطنية مدربة قادرة على شغل الوظائف التقنية والفنية والمهنية المتوافرة في سوق العمل في العراق.

يهدف هذا الكتاب إلى تزويد الطالب بالمعارف العلمية والمهارات العملية اللازمة في التعرف على المكونات المادية والبرمجية لشبكات الحاسوب الآلي. يتألف الكتاب من خمسة فصول، يتناول الفصل الأول نبذة تعريفية عن المبادئ الأساسية في تراسل البيانات. في حين الفصول من الثاني وحتى الرابع تقدم شرحاً وافياً ومبسطاً عن أساسيات الشبكات وأنواع الشبكات والتصاميم الأساسية لها، فيما يركز الفصل الخامس على التعرف على شبكات الأنترنت ومميزاتها.

وفي الختام نرجو أن نكون قد وفقنا في عرض محتويات هذا الكتاب بالأسلوب السهل والمبسط، كما ونتقدم بالشكر والامتنان إلى الخبيرين العلميين (الدكتور باسم عبد الباقي جمعة) و (الدكتور محمود زكي عبد الله) لجهودهما المبذولة في إجراء التقييم العلمي لفصول هذا الكتاب والى جميع من ساهم في إنجاز هذا الكتاب ومن الله التوفيق.

المؤلفون

المحتويات

رقم الصفحة	الموضوع
8	الفصل الأول: مبادئ أساسية في تراسل البيانات
٩	١-١ المقمة
١.	١-٢ تعريف الاتصالات وتاريخها
١٣	٣-١ عناصر الاتصالات
۲.	١-٤ تأثير الاتصالات في حياتنا
77	١-٥ وسائل الاتصالات المستخدمة
23	١-٦ تعريف شبكات الحاسوب
25	١-٧ أهداف شبكات الحاسوب
28	تمرين (۱ – ۱) ربط جهازي حاسوب بواسطة موصل من النوع توازي Parallel
33	تمرین (۱ – ۲) ربط جهازي حاسوب بواسطة موصل مو النوع توالي Serial
38	تمرین (۱ – ۳) ربط جهازي حاسوب بواسطة موصل ناقل من النوع USB
٤4	أسئلة الفصل الأول
45	الفصل الثاني: أساسيات الشبكات
46	٢-١ المقدمة
47	٢-٢ المكونات الرئيسة لشبكات الحاسوب
٤٧	٣-٣ المكونات المادية لشبكات الحاسوب
48	۱-۳-۲ بطاقة الشبكة Network Adapter Card
٤٩	٢-٣-٢ وسائط الربط ونقل المعلومات
٤٩	٣-٣-٣ أجهزة ربط الشبكات
٥١	Workstations محطات العمل *-٣-٢
٥٢	۲-۳-۵ الخوادم Servers
٥٣	تمرين (٢ – ١) تركيب بطاقة الشبكة بجهاز الحاسوب
٥٧	٢-٤ المكونات البرمجية لشبكات الحاسوب
٦.	٢-٥ وسائط الربط والاتصال الشبكي
٦.	٢-٥-١ وسائط الربط والاتصال السلكية
٦٧	٢-٥-٢ وسائط الربط والاتصال اللاسلكية
٦٩	٢-٢ أنواع المقابس وطرق ربطها
٧٤	تمرین (۲ – ۲) ترکیب مقبس BNC في موصل محوري
٧٧	تمرين (٢ – ٣) توصيل جهاز حاسوب باستخدام الموصل المحوري

٧٩	تمرين (٢ – ٤) توصيل مقبس RJ45 في طرف السلك المجدول UTP
٨٢	تمرین (۲ – ٥) التدریب علی إنشاء موصل مزدوج مجدول من النوع المباشر
٨٥	تمرین (۲ – ۲) التدریب علی إنشاء موصل مزدوج مجدول من نوع العبور
٨٨	تمرين (٢ - ٧) التدريب على إنشاء موصل مزدوج مجدول من النوع العكسي
٩١	تمرين (٢ – ٨) توصيل أجهزة الحاسوب بالمجمع المركزي
9 £	أسئلة الفصل الثاني
90	الفصل الثالث: أنواع شبكات الحاسوب
97	٣-١ مقدمة في أنواع الشبكات
97	٣-١-١ شبكات الحواسيب المحلية
٩٧	٣-١-٢ شبكات الحواسيب الإقليمية
٩٧	٣-١-٣ شبكات الحواسيب الواسعة
٩ ٨	٣-١-٤ شبكة الأنترنت
٩ ٨	٣-٣ شبكات الند للند
9 9	٣-٢-١ مميزات شبكة الند للند وعيوبها
1	٣-٢-٢ أنظمة تشغيل مايكروسوفت المتوافقة مع شبكات الند للند
1.1	تمرین (۳ – ۱) التدریب علی إعداد شبکة الند
117	تمرین (۳ – ۲) مشارکة المجلدات ومصادر الشبکة بین حواسیب شبکة محلیة
1 7 7	٣-٣ شبكات الزبون / الخادم
175	٣-٣-١ مميزات شبكات الزبون/الخادم
171	Types of Servers أنواع الخوادم المخصصة
170	٣-٣-٣ أنظمة التشغيل المستخدمة في شبكات الزبون/الخادم
١٢٧	تمرين (٣ – ٣) التدريب على حماية المجلدات في شبكة الزبون/الخادم
1 44	٣-٤ الشبكات المختلطة
١٣٤	أسئلة الفصل الثالث
170	الفصل الرابع: التصاميم الأساسية للشبكات
177	١-٤ مقدمة في تصاميم الشبكات المحلية
1 77	٤-٢ نظام الترابط المفتوح Open System Interconnection
١٤١	۴-۳ طبوغرافية الشبكات Networks Topology
1 £ 7	٤-٤ تصميم شبكات النطاق المحلي النوع الناقل BUS
١٤٨	تمرين (٤ - ١) دراسة تأثير أطوال موصلات الربط في نقل الإشارة في الشبكة
109	تمرین (٤ – ٢) كيفية إعداد عنوان IP وعنوان Subnet Mask
177	تمرین (٤ – ٣) كیفیة ربط شبكة محلیة نوع ناقل Bus
١٦٥	٤-٥ تصميم شبكات النطاق المحلي من النوع النجمي STAR

١٦٧	1-4 تصميم شبكات النطاق المحلي نوع الحلقة Ring
179	تمرین (؛ – ؛) کیفیة ربط شبکة محلیة نوع حلقة Ring
177	أسئلة الفصل الرابع
١٧٣	الفصل الخامس: شبكات الإيثرنت Ethernet
1 ٧ ٤	٥-١ مفاهيم أساسية لشبكة الإيثرنت
1 ٧ ٤	٥-٢ متحكم شبكة الإيثرنت
1 7 0	٥-٣ أنواع شبكة الإيثرنت
1 7 0	٥-٣-١ شبكات الإيثرنت 10Base 2
1 V 9	٥-٣-٣ شبكات الإيثرنت Base 5
181	٣-٣ شبكات الإيثرنت Base F
181	٥-٣-٤ شبكات الإيثرنت 10Base T
183	٥-٣-٥ شبكات الإيثرنت 100Base X – Fast Ethernet
184	٥-٤ طرق ربط شبكات الإيثرنت
185	٥-٤-١ المكرر (Repeater)
185	٥-٤-٢ المجمع المركزي (Hub)
186	٥-٤- المبدل (Switch)
187	٥-٤-٤ الموجـــه (Router)
189	تمرين (٥ – ١) التعرف على أجهزة الربط الشبكي
192	تمرین(۵ – ۲) ربط شبکة محلیة إیثرنت Ethernet نوع 10Base2
190	تمرین (۵ – ۳) ربط شبکة إیثرنت Ethernet نوع 10BaseT
۱۹۸	تمرین (٥ – ٤) ربط شبكة إیثرنت باستخدام جهاز المبدل
7.7	٥-٥ الشبكات اللاسلكيـــة
۲۰۳	٥-٥-١ أنواع الشبكات اللاسلكية
۲٠٤	٥-٥-٢ مكونات الشبكة اللاسلكية
206	تمرین(۵ – ۵) ربط شبکة خاصة لاسلکیة (Ad-Hoc)
711	أسئلة الفصل الخامس
717	المصادر

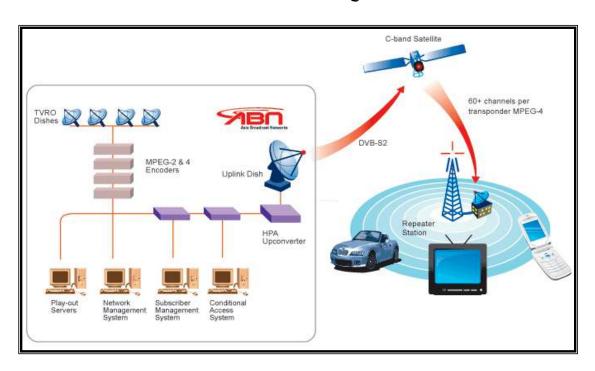
الفصل الأول المبادئ الأساسية في تراسل البيانات

أهداف الفصل الأول

من المتوقع أن يتعرف الطالب على مجموعة من المعارف العلمية الخاصة بتراسل البيانات السلكية واللاسلكية وتاريخها ليكون قادراً على معرفة الاتصالات بجميع أنواعها وأهمية علاقتها بحياتنا اليومية وبيان فائدة اندماجها مع شبكات الحواسيب.

محتويات الفصل الأول

- (۱ ۱) مقدمة
- (۱ ۲) تعريف الاتصالات وتأريخها
 - (۱ ۳) عناصر الاتصالات
 - (١ ٤) تأثير الاتصالات في حياتنا
- (١ ٥) وسائل الاتصالات المستخدمة
 - (۱ ۲) تعریف شبکات الحاسوب
 - (۱ ۷) أهداف شبكات الحاسوب



الفصل الاول المبادئ الأساسية في تراسل البيانات

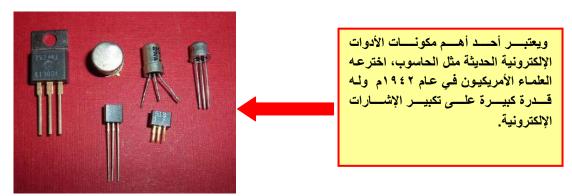
(۱-۱) مقدمة

لقد حققت أنظمة الاتصالات الكهربائية للبشر كثيرا من الأماني والأحلام التي كان مجرد التفكير بها يُعدُّ ضربا من الخيال فحطمت بذلك حاجز المسافات بينهم فأصبح يكلم بعضهم بعضا بالهواتف الثابتة أو المحمولة وهم على بعد مئات وآلاف الكيلومترات ويتحاورون وجهاً لوجه من خلال الشاشات التلفزيونية والهواتف المرئية ويشاهدون للتو ما يقع في هذا العالم من أحداث من خلال مئات المحطات التلفزيونية. وكذلك يرسلون رسائلهم ومستنداتهم في ثواني معدودة من خلال أجهزة الفاكس والبريد الإلكتروني ويطالعون الكتب والمجلات والصحف وينجزون أعمالهم المكتبية ومعاملاتهم المالية والتجارية وهم في بيوتهم وأماكن عملهم من خلال شبكات المعلومات، وشبكة الإنترنت. ولم يقتصر دور أنظمة الاتصالات على نقل المعلومات السمعية والمرئية والمقروءة بل تعداها إلى تطبيقات بالغة الأهمية فاستخدموها في أنظمة التحكم والقياس والمراقبة والاستشعار لنقل الإشارات بين مختلف الأجهزة والمعدات الموجودة في الطائرات والقطارات والصواريخ والتلسكوبات الفضائية والأقمار الصناعية ومحطات الأرصاد الجوية والمفاعلات النووية والمحطات الفضائية والمصانع والمستشفيات. واستخدمت كذلك في أنظمة الملاحة المختلفة كالرادارات وأنظمة تحديد الموقع وأنظمة المشاكل كالتصادمات والاختناقات والضياع.

(۱-۲) تعريف الاتصالات وتاريخها

الاتصال (communication) يعرف يتبادل المعلومات بين الأفراد أو الجهات باستخدام وسائل نقل مختلفة كالأمواج الصوتية والضوئية والكهرومغناطيسية. وتعمل أنظمة الاتصالات على جمع ونقل وتوزيع مختلف أشكال المعلومات بسرعة الضوء بين مصادر المعلومات ومواردها. إن ثورة الاتصالات والمعلومات لم تكن لتصل إلى ما وصلت إليه لولا مجموعة اكتشافات واختراعات تم إنجازها على مدى قرنين من الزمن كاكتشاف الكهرباء في عام ١٨٠٠م والتلغراف في عام ١٨٣٧م والتلفون في عام ١٨٧١م والموجات الكهرومغناطيسية في عام ١٨٩٠م والمقسم الآلي في عام ١٨٩١م وأنبوب الأشعة المهبطة في عام ١٨٩٧م والصمام الإلكتروني في عام ١٨٩٠م والتلفزيون في عام ١٩٢٠م والليف الزجاجي والترانزستور في عام ١٩٤٠م والدائرة المتكاملة في عام ١٩٥٠م والليزر في عام ١٩٦٠م والليف الزجاجي في عام ١٩٦٠م والمعالج الدقيق في عام ١٩٤٠م.

الشكل (١ - ١) جهاز التلغراف


الشكل (١ - ٢) جهاز التيليكس

وفي عام ١٩٢٩م قام المهندس الألماني رودولف هيل بتصنيع أول أشكال الفاكسات الحديثة حيث تم استخدام المسح الميكانيكي والكواشف الضوئية لتحويل محتويات الصفحة المراد إرسالها إلى إشارة كهربائية ترسل من خلال شبكات الهواتف العامة.

الشكل (١ – ٣) جهاز الفاكس

ولقد لعب الترانزستور دور البطل في هذه الثورة خصوصا بعد أن تم تصنيع أعداد كبيرة منه على شريحة صغيرة من السيليكون بما يسمى بالدائرة المتكاملة مما ساعد على تصنيع أجهزة إلكترونية ذات قدرات عالية وأحجام صغيرة وقليلة الاستهلاك للطاقة.

الشكل (١ - ٤) الترانزستور

لقد ارتبط تطور أنظمة الاتصالات والمعلومات ارتباطا وثيقا بتقنية الدوائر المتكاملة فلولاها لكان حجم الهاتف النقال الذي نضعه اليوم في جيوبنا بحجم خزانة كبيرة فيما لو صنع من الترانزستورات المنفردة وبحجم عدة غرف فيما لو صنع من الصمامات الإلكترونية ولقد وصل عدد الترانزستورات على الدائرة المتكاملة الواحدة حاليا إلى ما يزيد عن عشرة ملايين ترانزستور بعد أن كان لا يتجاوز العشرة عند اختراعها.

الشكل (١ - ٥) دائرة متكاملة

وفيما يلى ملخص لتطور الشبكات والإنترنت:

ما قبل عام ۱۹۰۰م: اتصالات المسافات البعيدة بواسطة الرسائل و الراكبين و الحمام الزاجل و التلغراف الضوئي و التلغراف الكهربائي وإشارات الدخان.

التسعينات من القرن التاسع عشر: اخترع غراهام بل الهاتف، واتسعت خدمة الهاتف بشكل كبير.

١٩٠١ م: أول إرسال لاسلكي لماركوني عبر المحيط الأطلسي.

الأربعينات من القرن العشرين: كانت الحرب العالمية الثانية هي المحفز لتطوير المذياع والمايكروويف.

١٩٤٨ م: نشر كلود شانون كتاب النظرية الرياضية للاتصالات.

الستينات من القرن العشرين: اختراع أجهزة الحاسوب المركزية.

١٩٦٢ م: عمل بول باران على تطوير شبكات تحويل الحزم.

۱۹۲۷ م: نشر لاري روبرتس أبحاث حول ARPANET.

۱۹۲۹ م: تم تأسيس ARPANET

السبعينات من القرن العشرين: انتشار استخدام الدوائر الرقمية المتكاملة و ظهور أجهزة الحاسوب الشخصية الرقمية.

۱۹۷۰ م: قامت جامعه هاواي بتطوير نظام ALOHANET.

١٩٧٢ م: قام راى تومسون بإنشاء برنامج يقوم بإرسال رسائل البريد الإلكتروني.

١٩٧٣ م: بدأ بوب كان و فينت سيرف العمل على ما أصبح لاحقاً بـ TCP/IP (بروتوكول التحكم في الإنترنت).

١٩٧٤ م: قامت شركة BBN بافتتاح الـ Telnet، و هو أول إصدار تجارى من ARPANET.

الثمانينات من القرن العشرين: انتشار استخدام أجهزة الحاسوب و أجهزة الحاسوب الصغيرة التي تستخدم نظام UNIX .

١٩٨١ م: تم إطلاق مصطلح الإنترنت على مجموعه متصلة من الشبكات.

۱۹۸۲ م: أصدرت (المنظمة الدولية لوضع المعايير) نموذج و برتوكولات اتصال متبادل للأنظمة المفتوحة، و تختفي البرتوكولات ولكن يظل للنموذج تأثير كبير.

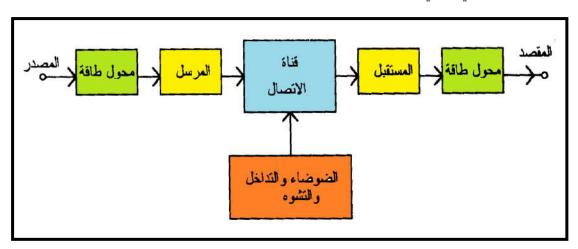
۱۹۸۳ م: أصبح بروتوكول التحكم في الإرسال / بروتوكول الإنترنت (TCP/IP هو اللغة العالمية للإنترنت، و انقسمت ARPANET إلى ARPANET و MILNET.

۱۹۸٤ م: تم تأسيس شركة سيسكو، و بدأ تطوير البوابات و أجهزة التوجيه (Routers)، و ظهرت خدمة اسم المجال (Domain Name Service)، كما تجاوز عدد مستخدمي الإنترنت الألف مستخدم.

- ١٩٨٦ م: تم إنشاء TSFNET (شبكة مؤسسة العلوم الوطنية)، و قد بلغت سرعة الشبكة ٥٦ كيلو بت في الثانية.
 - ١٩٨٧ م: تجاوز عدد مستخدمي الإنترنت ١٠,٠٠٠ مستخدم.
 - ١٩٨٩ م: تجاوز عدد مستخدمي الإنترنت ١٠٠,٠٠٠ مستخدم.
 - ١٩٩٠ م: أصبحت ARPANET (شبكة وكالة مشاريع الأبحاث المتقدمة) هي الإنترنت.
- ۱۹۹۱ م: نشأت شبكة الويب العالمية (World Wide Web) حيث قام تيم بيرنرزلى بتطوير كود شبكة الويب العالمية (World Wide Web).
- ۱۹۹۲ م: تم وضع ميثاق مجتمع الإنترنت (ISOC)، و تجاوز عدد مستخدمي الإنترنت ۱,۰۰۰,۰۰۰ مستخدم.
 - 199۳ م: أصبح MOSIC أول مستعرض ويب مستند إلى الرسوم متوفر.
- 1997 م: تجاوز عدد مستخدمي الإنترنت العشرة ملايين مستخدم، كما غطت شبكه الإنترنت الكرة الأرضية.
 - ١٩٩٨ م: شركة سيسكو تحقق ٧٠% أرباح من الإنترنت و تبدأ برامج التدريب الأكاديمي للشبكات.
 - ١٩٩٩ م: ظهور الإصدار السادس من (بروتوكول الإنترنت Ipv6).
 - ٢٠٠١ م: تجاوز عدد مستخدمي الإنترنت ١١٠ مليون مستخدم.

من أواخر التسعينات من القرن العشرين و حتى الأن يتضاعف عدد مستخدمي الإنترنت كل ستة أشهر.

(۱-۳) عناصر الاتصالات


إن عملية الاتصال في أبسط صورها تكون عبارة عن نقل فكرة أو معلومة أو معنى من شخص إلى شخص أخر كما موضح في الشكل (١-٦)، حيث ان أي أتصال يتكون من العناصر الأساسية والمرتبة على التوالى وهي:

- 1. المرسل (Sender): مصدر الرسالة أو النقطة التي تبدأ عندها عملية الاتصال.
- ٢. الرسالة (Message): هي المعاني أو الأفكار وهي الموضوع أو المحتوى الذي يريد المرسل أن ينقله إلى المستقبل.
- ٣. قناة الاتصال (channel): وهي الواسطة (الوسط) التي تنتقل بها الرسالة من المرسل إلى المستقبل.
 - ٤. المستقبل (receiver): هو الجهة أو الشخص الذي توجه له الرسالة ويقوم باستقبالها.
 - ٥. البروتوكول (protocol): هو مجموعة قوانين التي تتحكم بالاتصال.

وبذلك تنتقل الرسائل على طول قناة الاتصال، بعد أن يتم تحويلها إلى طاقة كهربائية بوساطة المرسل، ومن ثم يعيد المستقبل بناء الإشارة إلى شكلها الأصلي.

وبشكل تفصيلي فأن منظومة الاتصال الشاملة تتكون بصورة رئيسة من عدة عناصر رئيسة يمكن توضيحها بالمخطط الكتلى التالى:

الشكل (١ - ٧) المخطط الكتلي الشامل لعناصر الاتصال

أ <u>- المصدر</u>

وهو مصدر المعلومات أو البيانات المراد إرسالها وقد يكون فرداً أو آلة ويمكن لهذه المعلومات أن تتخذ أشكالاً عديدة مثل:

- ١ الضغط السمعي الناتج من الكلام أو الموسيقي.
- ٢ التغير في الحرارة والضغط والرطوبة في الجو الخارجي.
 - ٣ شدة الإضاءة وألوان الصور والمناظر.
- ٤ الرموز أو الحروف المتتابعة كما في حالة الكلمات المكتوبة المراد إبراقها أو الفتحات الموجودة ببطاقات الحاسوب وغيرها.

ب- محول الطاقة

لابد الإشارة عزيزي الطالب إلى أن المعلومات الصادرة من المصدر ليست في شكل إشارات كهربائية لذا لابد من تحويل شكلها إلى إشارة كهربائية ليتم إرسالها عبر منظومة الإرسال الإلكترونية، لذلك يستخدم محول الطاقة عند دخل المنظومة ليقوم بتحويل المعلومات المراد إرسالها إلى إشارات كهربائية على هيئة جهد أو تيار، ومن أمثلة هذه المحولات لاقط الصوت (أو الميكروفون) الذي يقوم بتحويل الصوت إلى إشارات كهربائية، وآلة قراءة الكروت والأشرطة المخرومة المستخدمة في الحاسوب الآلي لتحويلها إلى إشارات كهربائية و هكذا.

ج - <u>المرسل</u>

يقوم المرسل بتجهيز الإشارات الكهربائية الصادرة من المحول لتكون مناسبة للإرسال عبر قناة الاتصال المستخدمة ويمكن أن يقوم بعدة عمليات تجهيز الإشارات مثل التضمين والتضخيم والخلط والترشيح وغيرها، ويتكون المرسل بصفة عامة من المذبذب والمضمن والمضخمات والمراشح والهوائي أو وسيلة التوصيل مع قناة الاتصال.

د - قناة الإرسال

تعتبر قناة الاتصال وسيلة للربط بين المرسل والمستقبل ويمكن أن تكون:

- ١ زوج من الأسلاك الكهر بائية.
- ٢ أسلاك بهيأة كوابل عادية أو محورية.
 - ٣ -موجه الموجات (دليل موجي).
 - ٤ كوابل الألياف البصرية.
- ٥ الوسط الناقل عبر الفضاء مثل عبر التروبوسفير أو الآيونوسفير أو عبر خط الرؤية.

وكل هذه الوسائل لها خصائص مثل توهين الإشارات المارة عبرها وتحريك طورها، وتختلف درجة التوهين باختلاف الوسيلة المستخدمة وكذلك تردد الإرسال المستخدم.

هـ - المستقبل

وظيفة المستقبل هو استخلاص إشارة المعلومات الواردة من المرسل وتسليمها إلى محول الطاقة بخرج المنظومة الذي يحول هذه الإشارات إلى الصورة الأصلية التي كانت عليها المعلومات عند الإرسال، والمكونات الأساسية للمستقبل هي جهاز الاستقبال ودوائر التوليف والترشيح ودوائر الاستخلاص والمضخمات.

و - المؤثرات

تتعرض الإشارات المرسلة عبر قناة الاتصال بعدة مؤثرات وهي التوهين والتشوه والتداخل والضجيج أو الضوضاء وفيما يلي وصف موجز لهذه المؤثرات:

' -التوهين:

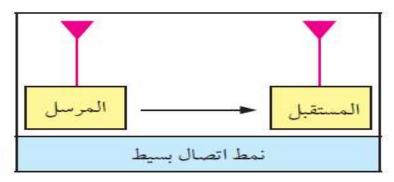
هو عملية تناقص الاتساع أو قوة الإشارة المرسلة وهذا التوهين يزداد بازدياد طول قناة الإرسال وبازدياد تردد الإرسال المستخدم، وتستخدم المضخمات للتغلب على عملية التوهين وإرجاع قدرة الإشارة إلى مستواها المقبول.

٢ - التشوه:

هو عملية تغيير وتشوه لشكل الإشارة المرسلة بسبب عدم الاستجابة الصحيحة للمنظومة للإشارة الداخلة لها، ويتلاشى التشوه بمجرد اختفاء الإشارة الداخلة للمنظومة، ومن الناحية النظرية يمكن إدخال تصميمات وتعديلات على المنظومة بحيث يمكن الإقلال والتغلب على التشوه إلى المستوى المقبول.

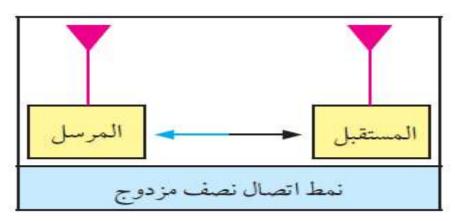
٣ -التداخل:

هو عملية تأثير خارجي ناشئ من إشارات خارجية تكون عادة من صنع الإنسان ويكون شكلها مشابه للإشارة المرسلة وهذه الإشارات الخارجية تتداخل مع الإشارة المرسلة بما يؤثر على جودة ووضوح الاستقبال، وهذه المشكلة شائعة في البث الإذاعي حيث يحدث أحياناً استقبال إشارتين أو أكثر في نفس الوقت عند المستقبل وعملية التغلب على هذه المشكلة بشكل نهائي تُعدُ ممكنة وقد لا تكون دائماً ممكنة التطبيق.


٤ - الضجيج أو الضوضاء:

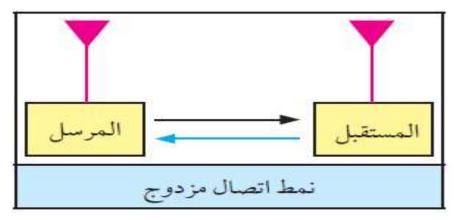
هو إشارات كهربائية عشوائية ناتجة من مسببات طبيعية بداخل وخارج المنظومة، والضجيج الكهربائي لا يمكن التخلص منه بشكل نهائي حتى من الناحية النظرية وعليه فإن مهمة مهندس وفني الاتصالات هو تصميم منظومة الاتصالات بحيث تحقق جودة الاستقبال المطلوبة وبما يضمن الإقلال والتغلب على تأثير الضجيج في هذه المنظومة.

كما ويمكن تصنيف أنظمة الاتصالات حسب اتجاه نقل المعلومات إلى ما يأتي:


وهو عبارة عن نظام الاتصال الذي يتم فيه نقل البيانات باتجاه واحد فقط، من المرسل إلى المستقبل كما في أنظمة الراديو والتلفاز.

الشكل (١ - ٨) يوضح نمط اتصال بسيط

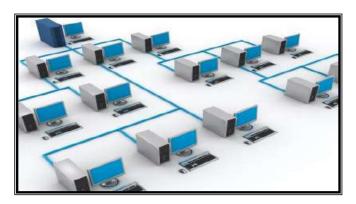
ب نمط اتصال نصف مزدوج (Half Duplex):


وهو عبارة عن نمط الاتصال الذي يكون فيه نقل البيانات باتجاهين بحيث يمكن لكل طرف أن يرسل أو يستقبل لكن ليس في الوقت نفسه، فعندما يكون الطرف الأول مرسلاً لا يمكنه أن يستقبل، ويكون الطرف الآخر مستقبلاً والعكس صحيح ومن أمثلة هذا النظام نظام الدفع للكلام (Push to Talk).

الشكل (١ - ٩) يوضح نمط اتصال نصف مزدوج

ب نمط اتصال مزدوج (Full Duplex):

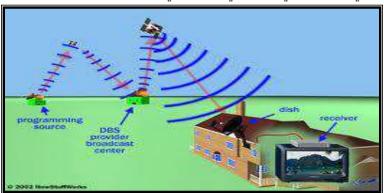
وهو نمط الاتصال الذي يتم فيه نقل البيانات بالاتجاهين في أن واحد بحيث يمكن لكل طرف أن يكون مرسلاً ومستقبلاً في نفس الوقت كما في أنظمة الهاتف الخلوي الحديث.



الشكل (١ - ١٠) يوضح نمط اتصال مزدوج

ويمكن تقسيم أنظمة الاتصالات إلى أربعة أنواع رئيسة وهي:

🗷 أنظمة الشبكات:


فأنظمة الشبكات تتكون من عدد كبير من المشتركين بحيث يمكن لأي مشترك منهم الاتصال بأي مشترك آخر على الشبكة لتبادل المعلومات معه شريطة أن يكون لكل مشترك عنوانه المحدد كما في شبكات الهاتف والتلكس والحاسوب والإنترنت.

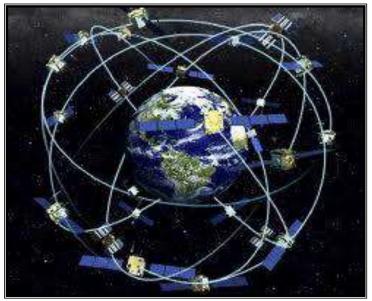
الشكل (١ – ١١) أنظمة الشبكات

🗷 أنظمة البث:

أما أنظمة البث فتقوم ببث المعلومات من مرسل واحد فقط إلى عدد كبير من المستقبلات كما في أنظمة البث الإذاعي والتلفزيوني الأرضي والفضائي.

الشكل (١ – ١٢) أنظمة البث

🗷 أنظمة التراسل:


أما أنظمة التراسل فتقوم بنقل المعلومات بين نقطتين ثابتتين أو متحركتين كأنظمة الكوابل المحورية والألياف الزجاجية والأقمار الصناعية والموجات الدقيقة.

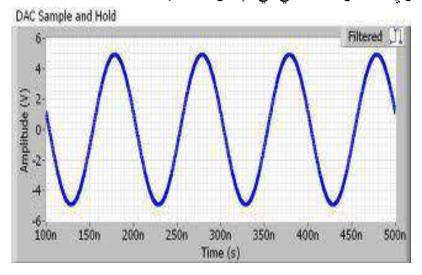
الشكل (١ – ١٣) أنظمة التراسل

≥ أنظمة جمع المعلومات:

وأما أنظمة جمع المعلومات فتعمل على جمع المعلومات من عدد كبير من المرسلات الموزعة جغرافيا واستقبالها في مركز واحد كأنظمة الرصد الجوي.

الشكل (١ - ١٤) أنظمة جمع المعلومات

حيث يتم من خلال هذه الأنظمة جميعها جمع المعلومات من مختلف المصادر وتحليلها من خلال استخدام تقنيات وبرامج خاصة لتحليل المعلومات لغرض الإفادة منها.


أنواع المعلومات وطرق تمثيلها

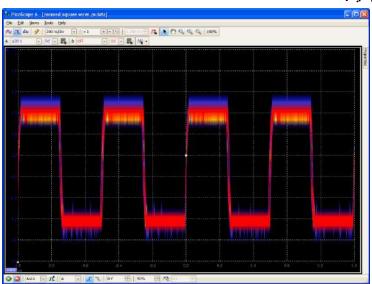
لقد فضل الله الإنسان على كثير من مخلوقاته بقدرته على التعلم والتفكير والعمل وزوده بحواس يستطيع من خلالها جمع المعلومات من المحيط الذي يعيش فيه وبعقل قادر على تخزين ومعالجة هذه المعلومات وبجوارح قادرة على إخراج المعلومات بأشكال مختلفة كالنطق والكتابة والتأشير والرسم والعمل. ولقد تم تقسيم إشارات المعلومات إلى أربعة أنواع رئيسة وهي:

- ☑ الإشارات السمعية (audio signals): وتشمل جميع الأصوات التي تسمعها الأذن البشرية.
- ▼ والإشارات المرئية (video signals): وتشمل جميع المشاهد المتحركة التي يمكن للعين البشرية رؤيتها.
- ▼ والإشارات المقروءة (text & graphic signals): وتشمل كل ما هو مكتوب أو مرسوم أو مصور.
- ◄ وإشارات البيانات (data signals): وتشمل الإشارات التي تولدها الحواسيب وأجهزة القياس والتحكم والرادارات والمستشعرات بأنواعها المختلفة.

ا تاثير الاتصالات في حياتنا (١-١)

يتم تمثيل المعلومات كهربائيا من خلال تحويل الكمية الفيزيائية الحاملة للمعلومات إلى جهد أو تيار كهربائي باستخدام ما يسمى بالمصوغات (transducers) كالميكروفون وكاميرة الفيديو اللذين يحولان شدة ضغط الهواء الناتج عن الصوت وشدة الضوء المنعكس عن المشهد إلى إشارات كهربائية. ويطلق على هذه الإشارات الكهربائية اسم الإشارات التشابهية (analog signal) لكونها تشبه إشارة المعلومات الأصلية من حيث أنها تأخذ عند كل لحظة زمنية قيمة محددة من بين عدد لامتناهي من القيم كما موضح في الشكل حيث أنها تأخذ عند كل لحظة زمنية تحمله إشارة المعلومات الكهربائية على طيف الترددات مقياسا تقريبيا لكمية المعلومات التي تحملها هذه الإشارة فعلى سبيل المثال يبلغ عرض نطاق الإشارة السمعية الهاتفية أربعة كيلوهرتز بينما يبلغ في الإشارة التلفزيونية أربعة ميغاهيرتز أي أن كمية المعلومات في الإشارة السمعية.

الشكل (١ - ١٥) الإشارات التشابهية


وعلى الرغم من الدور الكبير الذي لعبته المعلومات في حياة الإنسان إلا أنه لم يتم وضع معابير لقياس كمياتها إلا في الأربعينات من القرن العشرين عندما قام العالم الأمريكي كلاود شانون (Shannon) بوضع الأسس الرياضية لما يسمى بنظرية المعلومات (information theory) حيث أثبت أن كمية المعلومات في معلومة ما تتناسب عكسيا مع احتمالية حدوثها أي أنه كلما قلت احتماليتها كلما زادت كمية المعلومات فيها واستحدثت وحدة لقياس المعلومات أسماها "البت" (Bit) والتي تمثل كمية المعلومات المكتسبة عند وقوع حدث تبلغ احتمالية حدوثه خمسين بالمائة.

وقد ساعدت نظرية المعلومات العلماء والمهندسين على إيجاد طرق وتقنيات متقدمة لنقل وتخزين وتشفير وضغط مختلف أنواع المعلومات مما أدى إلى مضاعفة كمية المعلومات المنقولة عبر قنوات الاتصال أو المخزنة في معدات التخزين وإلى إمكانية إرسال المعلومات لمسافات شاسعة قد تصل إلى مئات

الملايين من الكيلومترات وإلى تقليل نسبة الخطأ في المعلومات المنقولة إلى مستويات متدنية. وعلى الرغم من بساطة أنظمة نقل الإشارات التشابهية إلا أنها معرضة للتلوث بشكل كبير بإشارات الضجيج التي يستحيل التخلص منها حال اندماجها معها مما يحد من إرسالها لمسافات بعيدة بسبب تراكم إشارة الضجيج مع زيادة المسافة إلى جانب صعوبة ضغطها لكي تحتل حيزا أقل في قنوات الاتصال ومعدات التخزين وعدم إمكانية استخدام الحواسيب الرقمية لتخزينها ومعالجتها.

وهنا بدأ التفكير باستخدام التقنية الرقمية (digital technology) لتمثيل المعلومات بعد أن وضع الرياضي الإنكليزي إدموند ويتكار (Edmund Whittaker) أسس نظرية الإعتيان (sampling theory) في عام ١٩١٥م وكذلك بعد أن تمكن المهندس الأمريكي هاري نايكوست (Harry Nyquist) في عام ١٩١٥م من تحديد عدد العينات اللازم أخذها في الثانية لتمثيل الإشارة التشابهية الأصلية.

لقد أكتشف نايكوست تجريبيا وأثبت ذلك نظريا فيما بعد العالم الأمريكي شانون أنه يكفي لنقل وتخزين الإشارة التشابهية أخذ عينات من هذه الإشارة بمعدل يجب أن يساوي أو يزيد عن معدل معين أطلق عليه اسم معدل نايكوست (Nyquist rate) والذي يساوي ضعف أعلى تردد في الإشارة الأصلية. أما الخطوة التالية المهمة في التقنية الرقمية فهي تحويل قيم العينات المأخوذة إلى شيفرات (codes) ذات أطوال محددة مكونة من سلسلة من الأرقام الثنائية (binary numbers) وهي الواحد والصفر حيث يطلق اسم "البت" على خانة الرقم الثنائي. ولكي يتم إرسال وتخزين الإشارات الرقمية يتم تحويلها إلى نبضات كهربائية أو ضوئية ذات مستويين أحدها يمثل الرقم واحد والآخر يمثل الرقم صفر كما موضح في الشكل (1-1) وذلك باستخدام الدوائر الإلكترونية الرقمية التي يعمل فيها الترانزستور كمفتاح بسيط يقوم بفتح وإغلاق الدوائر الكهربائية.

الشكل (١ - ١٦) الإشارات الرقمية

لقد أحدث التحول من النظام التماثلي إلى النظام الرقمي ثورة في طرق توليد ونقل وتخزين ومعالجة المعلومات حيث تتميز الإشارات الرقمية بمقاومتها العالية لإشارات الضجيج لتعاملها مع مستويين

فقط للجهد مقابل عدد لامتناهي من المستويات في الإشارات التشابهية وبسهولة تصميم وتصنيع الدوائر والأجهزة الرقمية وبسهولة استخدام نفس المعدات الرقمية وخاصة الحواسيب للتعامل مع مختلف أنواع إشارات المعلومات التي أصبحت تأخذ نفس الشكل وهو سلسلة الأصفار والآحاد مما أدى إلى اندماج تقنية الاتصالات وتقنية الحواسيب في تقنية واحدة. وتتميز كذلك بقابليتها الكبيرة للضغط بسبب سهولة التخلص من المعلومات المكررة فيها مما قلل كثيرا من الحيز الذي تحتله هذه المعلومات على قنوات الاتصال وذاكرات الحواسيب وبسهولة تشفيرها وتمويهها مما قلل كثيرا من أخطار التنصت والسطو على المعلومات بمختلف أنواعها.

(١-٥) وسائل الاتصالات المستخدمة

على الرغم من أن نظام الاتصالات يتكون بشكل عام من الوحدات الأساسية وهي جهاز الإرسال وقناة الاتصال وجهاز الاستقبال إلا أن أنظمة الاتصالات تتفاوت تفاوتا كبيرا في تعقيد تركيبها وذلك تبعا لنوع المعلومات المرسلة وموقع تردد حامل المعلومات على الطيف الكهرومغناطيسي ونوع قناة الاتصال والمسافة بين المرسل والمستقبل إضافة إلى تقنية الإرسال فيما إذا كانت تشابهية أو رقمية. والشيء يقال على وسائل الاتصالات والتي يمكن حصرها بنوعين أساسيين هي الاتصالات السلكية واللاسلكية.

وتستخدم قنوات الاتصال السلكية واللاسلكية لنقل الإشارة الكهربائية الحاملة للمعلومات من المرسل إلى المستقبل وغالبا ما تتحدد إمكانيات نظام الاتصالات المستخدم من خصائص هذه القناة فعرض نطاقها (channel loss) يحدد كمية المعلومات المنقولة من خلالها وفقدها (channel loss) يحدد مسافة الإرسال القصوى وطولها يحدد مقدار التأخير الزمني (time delay).

الاتصالات السلكية

حيث تعرف الاتصالات السلكية على أنها عملية النقل من خلال وسائط ملموسة مثل الأسلاك والكابلات، ففي القنوات السلكية تنتشر الإشارات من خلال أسلاك معدنية أو زجاجية كالمزدوجات السلكية والكابلات (القابلوات) المحورية ومرشدات الموجات والألياف الزجاجية الكهرومغناطيسية والهوائيات وخطوط النقل كما في الشكل (١- ١٧). وهو ما يتم استخدامه في شبكة التلفون أو شبكات الحاسوب التي تتواجد في مكان واحد.

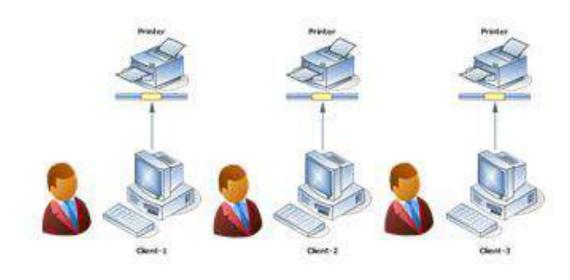
الشكل (١ – ١٧) الاتصالات السلكية

الاتصالات اللاسلكية

أما الاتصالات اللاسلكية فتعتمد على الموجات الكهرومغناطيسية، وفي القنوات اللاسلكية يتم استخدام الهوائيات (antennas) لربط المرسل مع المستقبل بدون وجود أسلاك بينهما وذلك من خلال الفضاء حيث يقوم هوائي الإرسال بتحويل الإشارات الكهربائية الخارجة من المرسل إلى موجات كهرومغناطيسية تنتشر في الفضاء فيقوم هوائي الاستقبال بالتقاط هذه الموجات وتحويلها إلى إشارات كهربائية وإرسالها عبر الأثير من خلال هوائيات خاصة يغذي بها المستقبل. وتنتشر الموجات الكهرومغناطيسية في الأصل على شكل خطوط مستقيمة إلا أنها بسبب قربها من الأرض وضمن الغلاف الجوي قد تتعرض لكثير من الظواهر الفيزيائية كالانعكاس والانكسار والحيود والاضمحلال والتبعثر التي قد تضر ببعض أنظمة الاتصالات وتفيد البعض الآخر.

الشكل (١ – ١٨) الاتصالات اللاسلكية

(١ - ٦) تعريف شبكات الحاسوب

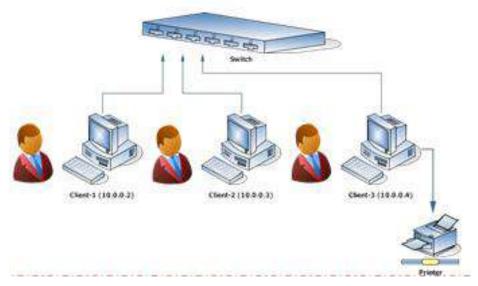

أدى التطور التقني إلى حدوث ثورة المعلومات وثورة الاتصالات حيث تهتم ثورة المعلومات بجمع ومعالجة وتخزين وتوزيع المعلومات أما ثورة الاتصالات فتمثلت بانتشار شبكات الهاتف والشبكات الحاسوبية والأقمار الصناعية، حيث أصبحت الشبكات الحاسوبية من أولى متطلبات العصر حيث تؤمن تبادل المعلومات والمشاركة في الموارد والتجهيزات المختلفة، حيث نمت الحاجه إلى وجود الحواسيب في كل المجالات بسبب دورها غير المجهول في تطوير جميع مجالات الحياه العملية والعلمية والشخصية

وبالتأكيد إن عدد كبير منا إن لم يكن جميعنا يمكنه أن يتخيل مدى الفائدة التي يمكن أن نجنيها لوجود جهاز حاسوب عند أي منا في البيت أو في مقر العمل، فكم من الوقت سنوفر عندما نكتب خطاباً أو تقريراً و ننسقه ثم نقوم بطباعته على الطابعة الملحقة بجهاز الحاسوب أو إذا أردنا أن نقوم بعملية المسح الضوئي لصوره معينه لإدراجها في رساله ما أو تقرير ما في جهاز الحاسوب الخاص بنا ، و لكن ماذا لو افترضنا أنك أنت وثلاثة من زملائك تحتاجون جميعاً من وقت لأخر إلى استعمال الطابعة بغرض طباعة تقارير معينه إذاً فما هو الحل ولا يوجد لديكم غير طابعة واحده فقط؟

الحل لهذه المشكلة في الوضع الحالى يمكن أن يكون أحد أمرين:

الحل الأول: هو أن تقوموا جميعاً بالطباعة على الطابعة الملحقة بجهازك، وهو حل غير عملي على الإطلاق للخدم الأنه مضيع جداً للوقت.

أما الحل الثانى: فهو أن يلحق بكل جهاز منهم طابعه خاصه به، وهو حل غير عملي أيضاً لأنه مكلف جداً فماذا لو لدينا ألف طالب يريدون الطباعة؟



الشكل (١ - ١٩) يوضح استخدام طابعة لكل جهاز حاسوب

نشأت تلك المشكلة بسبب أننا جميعاً احتجنا إلى استعمال الطابعة وقد تنشأ نفس المشكلة عندما نحتاج أيضاً إلى أن نعمل على حزمة من البرامج أو ملف معين من ملفات قواعد البيانات لشركتنا مثلاً أو شركه أخرى، إذن فالمشكلة الأساسية هي أننا احتجنا إلى استعمال نفس المكونات المادية مثل الطابعة أو الماسح الضوئي أو احتجنا إلى أن نشترك في نفس المكونات البرمجية، وبسبب أن كل جهاز من الأجهزة ليس متصلاً بالجهاز الأخر بأي شكل من الأشكال فإن تبادل المعلومات أو المكونات المادية يكون في هذه الحالة حلم يصعب تحقيقه.

ومن هنا نشأت الحاجة لوجود ما يسمى بشبكات الحاسوب الآلي، و تعريف شبكات الحاسوب في أبسط صورة لها هي أنها اثنين أو أكثر من الحواسيب الآلية متصلين ببعضهم بأي شكل من الأشكال

والغرض الأساسي منها هو مشاركة و تبادل البرمجيات و المكونات الصلبة بين الجهازين بالإضافة إلى القدرة على التحكم في الأجهزة وتقديم الدعم الفني والتوجيهي لها من خلال مكان واحد وهو ما يسمى بمركزية الإدارة . والآن وبعد أن أنشأنا شبكة الحاسوب الآلي وأصبحت جميع أجهزة الحاسوب متصلة ببعضها، لم تعد هناك حاجة لأن نلحق بكل جهاز حاسوب طابعة خاصة به لكي يقوم بالطباعة بل يكفي أن تكون هناك طابعة واحدة فقط متصلة بأحد الأجهزة لكي تتمكن باقي أجهزة الحاسوب في الشبكة من الطباعة، بل وما هو أكثر من ذلك حيث يمكن لجميع أجهزة الحاسوب الآلي في الشبكة أن تتبادل المعلومات والمكونات البرمجية بالإضافة إلى المكونات المادية بالإضافة إلى مركزية الإدارة والدعم الفني عن طريق مصدر واحد في الشبكة.

الشكل (۱ - ، ۲) يوضح استخدام طابعة واحدة لكل الأجهزة من خلال إنشاء شبكة

تعريف الشبكة الحاسوبية:

هي مجموعة من الحواسيب المستقلة (المختلفة أو المتشابهة) المرتبطة فيما بينها بشبكة تبادل معطيات بهدف تبادل المعلومات والاشتراك في استثمار موارد المنظومة مثل الطابعات والراسمات ووسائط التخزين وغيرها.

(١ - ٧) أهداف شبكات الحاسوب

هناك العديد من المؤسسات التي تمتلك عدد من الحواسيب الشخصية ومحطات العمل المركزية الصغيرة WORKSTATIONS، إضافة إلى الأجهزة الطرفية. تبدو أهمية الشبكة كونها الوسيلة الوحيدة القادرة على ربط جميع الأنظمة معاً بشكل ملائم لعمل الشبكات بما تقدمه من الأهداف والفوائد التالية:

(۱)- مشاركة البرمجيات: تؤمن شبكة الحاسوب إمكانية تشارك المستثمرين في البرمجيات والأنظمة المتواجدة على أجهزة الشبكة إذ يمكن لمؤسسة أو شركة ما على سبيل المثال،

- من وضع قاعدة المعطيات الخاصة بذاتية الموظفين لديها على الحاسوب المركزي للشبكة، وتوفر الشبكة بدورها إمكانية استخدام قاعدة المعطيات هذه من قبل مختلف أقسام (دوائر) المؤسسة كدائرة الشؤون الإدارية ودائرة الرواتب والدائرة الصحية ... وغيرها، وبالتالي لا حاجة لتكرار المعلومات في العديد من الدوائر.
- (٢)- مشاركة موارد الشبكة: يؤدي وجود الشبكة إلى الاستثمار الأمثل للتجهيزات الفيزيائية المرتبطة بالشبكة (الطابعات الراسمات وحدات التخزين وحتى الحواسيب نفسها)، إذ أن تشارك مستثمري الشبكة في استخدام تلك الموارد يوفر على المؤسسة الكلف الباهظة التي قد تترتب من ضرورة توفر تلك التجهيزات في كل قسم من الأقسام المختلفة.
- (٣)- تأمين المعالجة الموزعة للمعلومات: هناك العديد من المعلومات التي قد تصدر من جهة ما من جهات المؤسسة وتحتاج إلى معالجة (أو اتخاذ قرار) في اكثر من جهة من الجهات الأخرى في المؤسسة. إن وجود شبكة حواسيب تؤمن مثل تلك الخدمة بسهولة بحيث تسرع عملية المعالجة لتلك المعلومات.
- (٤)- توفر العمل للمستثمرين بأدائية و موثوقية عاليتين ضمن أقل كلفة ممكنة: تتمتع بعض أنظمة شبكات الحاسوب بأدائية وموثوقية عالية ، إذ يمكن للشبكة توفير البدائل مباشرة في حال حدوث خلل أو عطل ما في أحد مكونات الشبكة بحيث لا تسمح للمستثمر بمتابعة عمله وبأقل فترة توقف ممكنة.
- (°)- توسيع قاعدة مستثمري الحواسيب بتكلفة منخفضة: يمكن توسيع قاعدة مستخدمي الحاسوب الشخصي في إحدى المؤسسات باللجوء إلى الحاسوب الشخصي التي تكون بدون قرص أو الحاسوب ذو الكفايات المتواضعة، رخيصة الثمن حيث يمكنها استخدام نظام الملفات المركزي الموجود في حاسوب التخديم الرئيس للشبكة لحفظ المعلومات واستدعائها وذلك للاستفادة من مزاياه العالية من حيث سرعة المعالجة وسعات التخزين.
- (٦)- توفير التحكم والإدارة المركزية للأنظمة الموزعة جغرافيا: إن بنية العديد من نظم تشغيل الشبكات تسمح بمراقبة جميع مكونات الشبكة والتحكم بها من موقع مركزي، وبالتالي إمكانية إدارتها بشكل جيد ورفع مستوى أدائية العمل على الشبكة.
- (٧)- تأمين التوافق بين التجهيزات والبرمجيات المختلفة: إن توزع التجهيزات الحاسوبية المستخدمة في مؤسسة ما قد تخلق عدم توافق في عمل تلك التجهيزات الحاسوبية معاً (حواسيب ذات نظم تشغيل مختلفة مثل SUN, IBM) أو حواسيب ذات بنى تصميمية متلفة مثل SUN, IBM. إن وجود شبكة حاسوبية يسمح بربط مثل تلك الأنظمة المختلفة ببعضها والتخاطب فيما بينها.
- (A)- مشاركة وتبادل الملقات والمعلومات: يعتبر تبادل المعلومات والملفات بين أقسام المؤسسة عملاً من الأعمال الأساسية في هذه المؤسسة ويتم عادة تبادل مثل تلك الملفات بواسطة البريد أو باستخدام مراسلين مخصصين لهذا العمل، مما يستغرق جهداً وزمناً كبيرين يؤديان إلى انخفاض في المردود وزيادة في الكلفة. توفر الشبكة الحاسوبية التي تربط جميع أقسام هذه المؤسسة ببعضها إمكانية تبادل الملفات والمعلومات بين المستثمرين بسهولة فائقة وسرعة عالية.

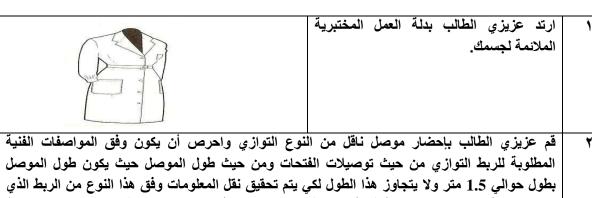
- (٩)- التخاطب والمناقشة بين مستثمرى الشبكة: يحتاج العديد من العاملين في مؤسسة إلى الاتصال فيما بينهم أو بالمستوى الأعلى بهدف الاستفسار عن موضوع معين يتعلق بالعمل، حيث يستخدم الهاتف عادة للتخاطب والمناقشة بين العاملين، الشبكة الحاسوبية باستخدام برمجيات معينة يمكن أن تقوم بهذا الدور.
- (١٠)- حماية المعلومات وأمنها: تتمتع معظم أنظمة الشبكات بمواصفات أمان عالية تحمي الملفات من الدخلاء الذين لم يصرح لهم بالنفاذ إليها. ويمكن للمشرفين على الشبكة تحديد السماح لكل مستثمريها بحيث لا يمكن الدخول إلا إلى الأدلة والملفات المخصصة له. كما يمكن لمدير النظام فرض قيود على المناطق التي يحق له الدخول إليها. توفر كذلك نظم إدارة الشبكات الأدوات المساعدة في مراقبة سير العمل على الخادمات الأساسية ونظم المحاسبة العامة لاستثمار الشبكة سواءً حسب مبدأ عدد ساعات العمل على الشبكة أو حسب كميات البيانات المتبادلة اعتماداً على مزيج من المبدأين يعطي مدير النظام الحرية في وضع قوانين المحاسبة وكلفة الوحدة الزمنية أو الرزمة بما يتناسب مع نظام المحاسبة الخاص.
- (١١)- النقل متعدد الأنواع للمعلومات: تتميز الشبكات الحديثة بإمكانية نقل الصوت والصورة إضافة إلى المعطيات وتهدف هذه الشبكات إلى ربط كل حاسوب في المنزل أو العمل بخطوط نقل عالية السرعة. ومن الخدمات المفيدة التي تؤمنها الشبكات هي المؤتمرات المرئية video conferences التي تحقق إجراء المؤتمرات عن بعد.
- (١٢)- إستخدام البريد الالكتروني: إن وجود شبكة حاسوبية يغني عن استخدام الأجهزة الهاتفية، إذ يمكن إجراء الاتصال من خلال الخدمة المسماة بالبريد الإلكتروني التي توفرها أنظمة الشبكات الحاسوبية والتي تمتاز عن الخدمات الهاتفية في العديد من النواحي منها ضمان وصول الرسالة إلى الجهة المقصودة دون الحاجة لضرورة وجود شخص في ذلك المكان ويؤمن تلقي الرسائل من أي موقع. كما يملك نظام البريد الإلكتروني إمكانية إعادة توجيه الرسائل والإجابة الآلية وغيرها من مزايا الاتصالات الحديثة.
- (۱۳)- إرسال إشارة الإنترنت: من خلال الربط الشبكي للأجهزة الحاسوب فأنه من الملاحظ والممكن استخدام اشتراك إنترنت واحد يشغّل كافة الأجهزة على الشبكة، حيث يكون بإمكان هذه الأجهزة استخدام الإنترنت دون اشتراك مسبق.
- (١٤)- مشاركة الاجهزة والادوات: من أهم فوائد والمزايا الرئيسة للشبكات هي قدرتها على التشارك بالتجهيزات؛ فيمكن لعددٍ من الأجهزة أنْ تتشارك بطابعة واحدة Printer أو بماسح ضوئي Scanner أو بمودم Modem أو بقرص صلب Hard disk أو بسوّاقة أقراص مرنة Floppy disk وسوّاقة أقراص ليزريّة Compact disk و كاميرا رقميّة Digital Camera ... ألخ من الأعتدة والأجهزة.
- (١٥)- الإدارة المركزية: نتيجة لأن معظم الموارد على الشبكة موجوده بجوار الخادم فإن الإدارة تصبح سهله، و بالتالى فإن عمليات أخذ النسخ الاحتياطية Backup تتم في مكان واحد فقط مما يسهل هذه العملية.
- (١٦)- ربط أنظمة التشغيل المختلفة: مع التطور الدائم في تكنولوجيا الشبكات فقد أصبحت قادرة على ربط أنظمة تشغيل مختلفة مع بعضها البعض مثل Windows مع Apple Macintosh.

الزمن المخصص: ٣ ساعات رقم التمرين: (١ – ١)

اسم التمرين: ربط جهازي حاسوب بواسطة موصل ناقل من النوع التوازي Parallel

مكان التنفيذ: مختبر شبكات الحاسوب

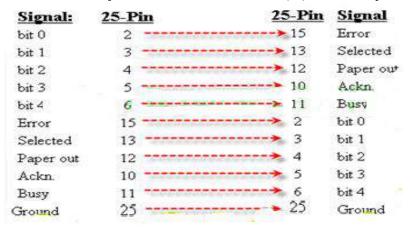
أولا: الأهداف التعليمية:

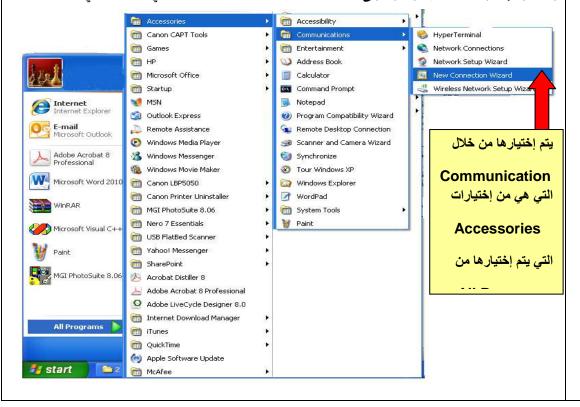

إن يكون الطالب قادراً على إنشاء وربط جهازي حاسوب آلى بواسطة موصل من النوع توازي ثانيا: التسهيلات التعليمية:

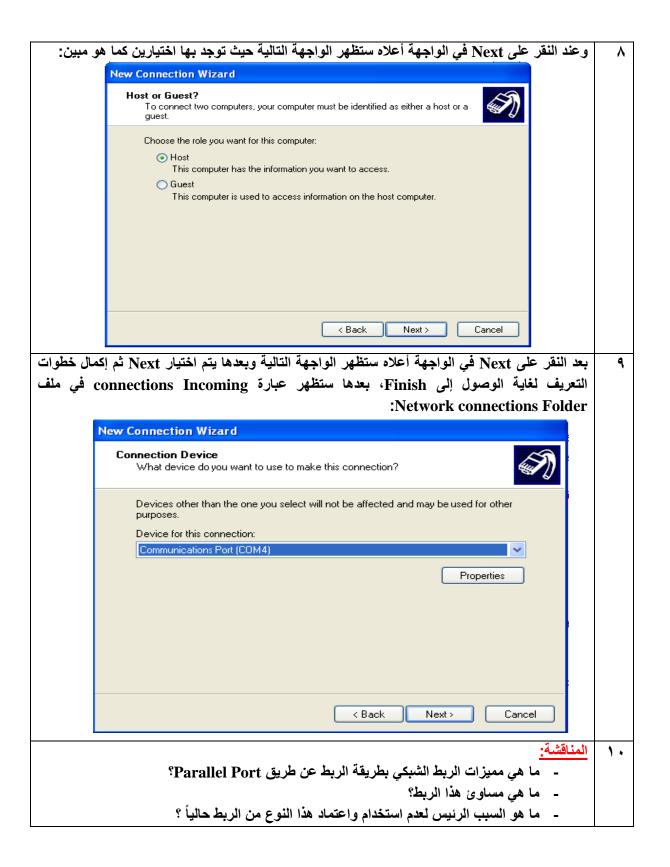
۱ – أجهزة حاسوب (عدد أثنان) ذات نظام تشغيل Windows Xp

٢- موصل ناقل من النوع التوازي ذو طول مناسب.

٣- دفتر ملاحظات.


ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات


يتسم بسرعة نقل البيانات بسرعة فائقة ولمسافات قصيرة مقارنة بالربط التوالى الذي ينقل البيانات بسرعة أقل ولكن لمسافات أطول.


في حالة عدم وجود موصل توازي فبإمكانك عزيزي الطالب عمل ذلك الموصل بنفسك يدويا، ولعمل ذلك يلزمك سلكي طابعة بحيث تقوم بقص الطرف الذي يتم إدخاله في الطابعة والإبقاء على الطرف الذي يدخل في منفذ الطابعة في الكمبيوتر، ثم قم بربط السلكين حسب المخطط التالى:

بعد الانتهاء من إعداد الموصل المطلوب لعملية الاتصال بين جهازين بهذه الطريقة، قم بإجراء الإعدادات اللازمة لذلك من خلال بعض الخطوات التسلسلية والتعريفية لنظام التشغيل ويندوز، قبل إجراء هذه الإعدادات تأكد عزيزي الطالب وجود فيشة التوازي Parallel port وهي تمثل فيشة ومتصل الطابعة (يكون ذات لون أحمر عادة) في جهازي الحاسوب الآلي وهي من الأنثوي ذات ٢٥ فتحة، بعد ذلك قم بايصال طرفي كيبل التوازي في الجهازين بشكل فني يمكن الجهازين من الاتصال مباشرة، ثم قم بتشغيل الجهازين وتحميل نظام التشغيل Windows Xp في الجهازين وبعد ذلك قم بالنقر على أيقونة Start واختيار الإيعازات المناسبة وصولاً إلى New Connection Wizard كما في الشكل التالي:

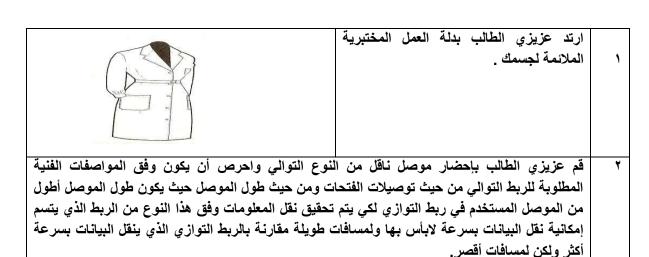
استمارة قائمة الفحص								
الجهة الفاحصة:								
لالب: المرحلة:								
<u>:</u> نصص:								
اسم التمرين:								
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم				
		%0	ارتداء بدلة العمل	1				
		%10	إعداد كيبل ربط التوازي ومراحل تحقيق الربط	۲				
			بين جهازي الحاسوب وتحميل نظام التشغيل					
			Windows Xp					
		%10	مراحل تعريف الربط التوازي مع إنجاز وتحقيق	٣				
			الربط الشبكي بين جهازي الحاسوب					
		%۱۰	المناقشة	٤				
		%°	الزمن المخصص	٥				
			یع	المجمو				
1		التوقيع	قاحص:	اسم الذ				
التاريخ								

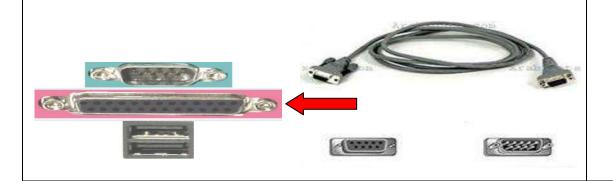
رقم التمرين: (١-٢) الزمن المخصص: ٣ ساعات

اسم التمرين: ربط جهازي حاسوب بواسطة موصل ناقل من النوع التوالي Serial

مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

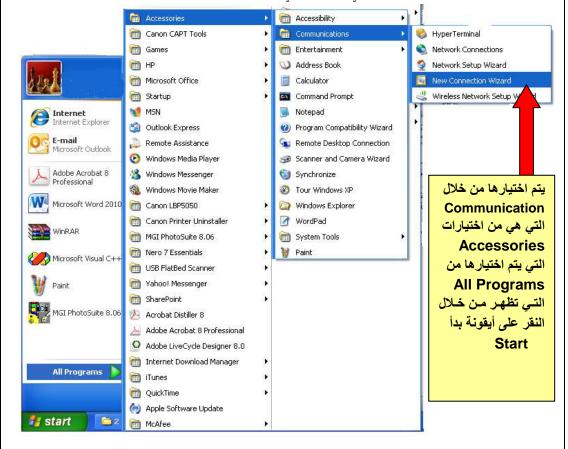

إن يكون الطالب قادراً على إنشاء وربط جهازي حاسوب آلي بواسطة موصل من النوع لتوالى.

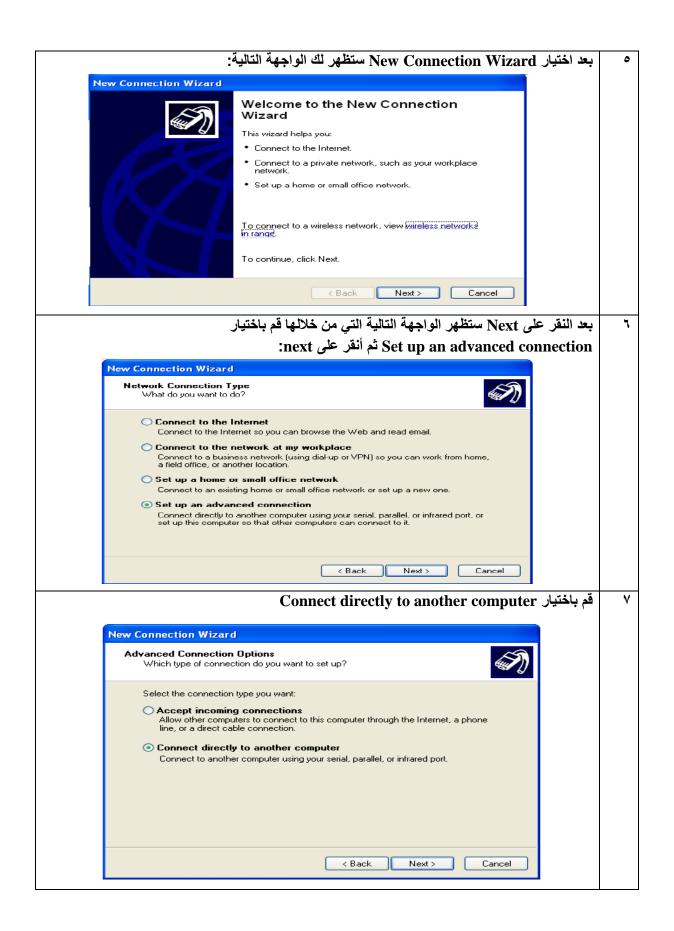

ثانيا: التسهيلات التعليمية:

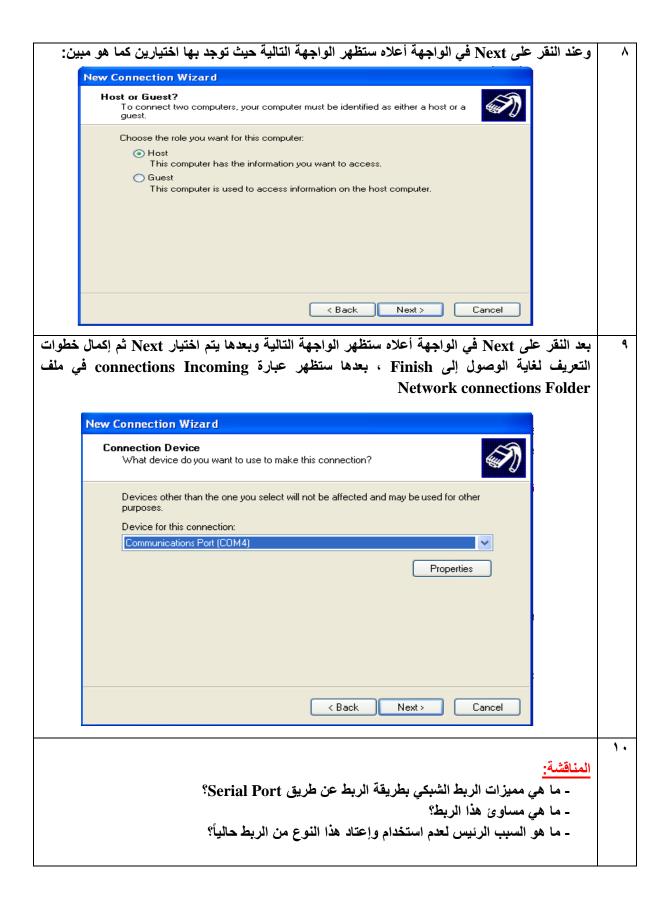
۱- أجهزة حاسوب (عدد أثنان) ذات نظام تشغيل Windows Xp

٢ ـ موصل ناقل من النوع التوالي ذو طول مناسب

٣ ـ دفتر ملاحظات.






في حالة عدم وجود موصل توالي فبإمكانك عزيزي الطالب عمل ذلك الموصل بنفسك يدويا ولعمل ذلك يلزمك قم بإحضار عدد (٢) ماوس توالي والأسلاك الخاصة بهما يجب أن تكون سليمة ولا يوجد أي قطع داخلي بهما، ثم قم بقص كل سلك للفأرتين (Mousses) وذلك للاستفادة من السلك، ثم قم بتوصيل سلكي مع بعضهما البعض وفق المخطط التالي:

بعد الانتهاء من إعداد الموصل المطلوب لعملية الاتصال بين جهازين بهذه الطريقة، قم بإجراء الإعدادات اللازمة لذلك من خلال بعض الخطوات التسلسلية والتعريفية لنظام التشغيل ويندوز، قبل إجراء هذه الإعدادات تأكد عزيزي الطالب وجود فيشة التوالي Serial port وهي تمثل فيشة ومتصل الماوس في جهازي الحاسوب الآلي وهي ذات ٩ فتحة، بعد ذلك قم بإيصال طرفي كيبل التوالي في الجهازين بشكل فني يمكن الجهازين من الاتصال مباشرة، ثم قم بتشغيل الجهازين وتحميل نظام التشغيل كالاسلام في الجهازين وبعد ذلك قم بالنقر على أيقونة Start واختيار الإيعازات المناسبة وصولاً إلى الجهازين وبعد ذلك كما في الشكل التالي:

استمارة قائمة الفحص				
			الفاحصة:	الجهة
	نة:	المرح	طالب:	اسم ال
			ص:	التخص
			تمرين:	اسم ال
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم
		% °	ارتداء بدلة العمل	
		%10	إعداد كيبل ربط التوالي ومراحل تحقيق الربط بين جهازي الحاسوب وتحميل نظام التشغيل Windows Xp	۲
		%10	مراحل تعريف الربط التوالي مع إنجاز وتحقيق الربط الشبكي بين جهازي الحاسوب	٣
		%۱۰	المناقشة	٤
		%0	الزمن المخصص	٥
			٤3	المجمو
	l	التوقيع	فاحص	اسم ال
			Ć	التاريخ

رقم التمرين: (۱ – ۳) الزمن المخصص: ۳ ساعات

اسم التمرين: ربط جهازي حاسوب بواسطة موصل ناقل من النوع التوالي العالمي USB

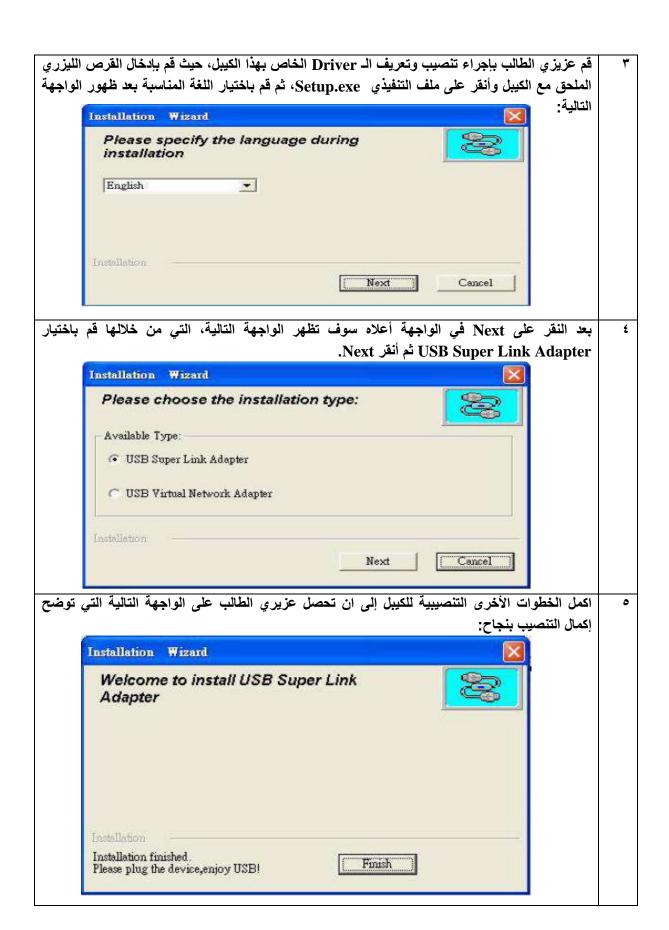
مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يكون الطالب قادراً على إنشاء وربط جهازي حاسوب آلي بواسطة الموصل الناقل USB ثانيا: التسهيلات التعليمية:

۱ – أجهزة حاسوب (عدد أثنان) ذات نظام تشغيل Windows Xp

٢ - موصل ناقل من نوع التوالى العالمي USB ذو طول مناسب.


٣ ـ دفتر ملاحظات.

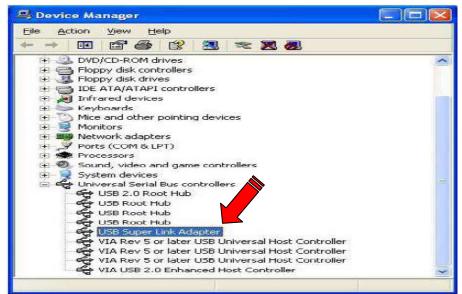
ثالثان خطوات العمل، النقاط الحاكمة، الرسومات

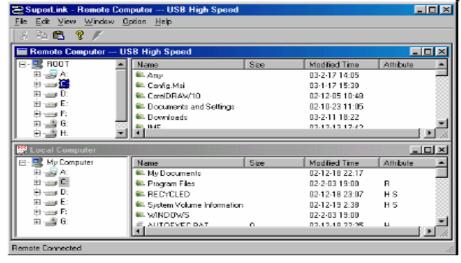
ا ارتد عزيزي الطالب بدلة العمل المختبرية الملائمة لجسمك.

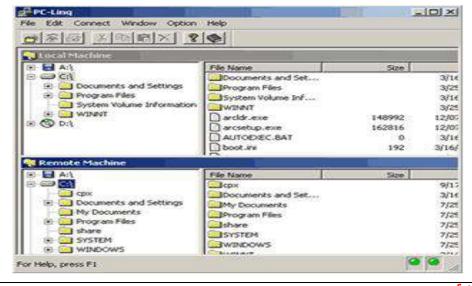
قم عزيزي الطالب بإحضار موصل ناقل من النوع التوالي العالمي USB واحرص أن يكون وفق المواصفات الفنية المطلوبة للربط من حيث توصيلات الفتحات، حيث يوجد في السوق المحلي أنواع عديدة من هذه الكيبلات المخصصة للربط الشبكي عن طريق منفذ USB ومن بين أهم هذه الأنواع هو النوع المسمى USB 2.0 NETLINK CABLE

بعد أن أكملت عزيزي الطالب عملية التنصيب الخاصة بكيبل USB، قم الآن بإيصال وربط هذا الكيبل في المنافذ الخاصة به في كلا الحاسوبين وكما هو واضح في الشكلين التاليين:

عند إدخال طرفي الكيبل في المنافذ USB الموائمة للطرفين فأن نظام التشغيل Windows XP سوف يقوم بالتعرف على وجود مكون مادي جديد تم إضافته للجهاز، حيث سيقوم بإجراء بحث ذاتي لتعريفه كما هو واضح من الشكل التالي الذي يظهر بعد إدخال طرفي الكيبل، قم بعد ذلك باختيار Install the software ومن ثم أنقر على الأيقونة Next حيث سيجري هذا النظام بحث ذاتي عن كل التعاريف التنصيبية التي من الممكن أن تكون موائمة لتعريف هذا المكون المادي.


بعد النقر على Next الظاهرة في الواجهة أعلاه سوف يتم إجراء البحث من قبل نظام التشغيل Windows
 ل وبالتالي إيجاد الفايل التعريفي المناسب فتظهر الواجهة التالية:


 بعد اختيار Continue Anyway في الواجهة أعلاه سوف يتم نقل وتثبيت ملف التعريف المناسب وعندها تظهر واجهة الانتهاء التالية:


ا من واجهة سطح المكتب اختر My Computer ثم اختر Control Panel ثم اختر System ثم اختر Universal Serial Bus ثم Properties ثم Hardware ثم Properties نقط النقر على USB Super Link Adapter ستضر كافة الفايلات التعريفية للكيبل المختار

1 لكي تتم عملية الربط الشبكي بين الحاسبتين، ننقر على أيقونة تنفيذ البرنامج الملحق مع الكيبل والمسمى ببرنامج (Super Link) الذي عند تنصيبه تظهر الـ Shortcut الخاصة به على سطح المكتب، ومن مزايا هذا البرنامج أنه باستطاعته إظهار شاشتين إحداها للحاسوب Local Computer والأخر للحاسوب Remote Computer:

۱۲ كما يمكنك عزيزي الطالب تنصيب وتنفيذ برامج أخرى لغرض إكمال الربط الشبكي برمجياً مثل تنصيب برنامج Pc Link الذي سيظهر أيضاً واجهة تطبيقية تظهر فيها مكونات الحاسوبين:

- ١ المناقشة:
- ماهى مميزات الربط الشبكى بطريقة الربط التسلسلي USB؟
 - ماهي مساوئ هذا الربط؟
- هل بالإمكان ربط أكثر من جهازى حاسوب بواسطة كيبل USB؟ كيف؟
- ناقش أهم الفروقات التي لاحظتها من خلال الربط الشبكي للأنواع الثلاثة.

استمارة قائمة الفحص				
		الفاحصة:	الجهة	
	المرحلة:	طالب:	اسم الد	
		ص:	التخص	
		تمرين:	اسىم اڭ	
جة الملاحظات		الخطوات	الرقم	
	%0	ارتداء بدلة العمل	١	
	%10	مراحل تنصيب وتثبيت الملفات التعريفية الخاصة بتعريف الكيبل USB في جهازي الحاسوب ذات نظام التشغيل Windows Xp	۲	
	%10	مراحل إجراء التحقق من حدوث الربط الشبكي بين الجهازين ومراحل استخدام مشاركة الملفات من خلال البرنامج الملحق بالكيبل.	٣	
	%١٠	المناقشة	٤	
	%°	الزمن المخصص	٥	
		ع	المجمو	
	التوقيع	فاحص	اسم الذ	
	I	Ž	التاريخ	

اسئلة الفصل الأول

- س ١: ما المقصود بالاتصالات؟ وما هي المراحل الأساسية لتطورها؟
 - س٢: ماهى عناصر الاتصال؟ أذكرها واشرح واحدة منها.
 - س٣: ارسم المخطط الكتلى الشامل لعناصر الاتصال.
- س٤: ما المقصود بقناة الإرسال؟ أذكر بعض الأمثلة التي تعرفها عنها.
 - سه: ما هو الفرق بين المرسل والمستقبل؟
 - س٦: ما المقصود بالمؤثرات؟ صفها بإيجاز.
- س٧: ما هي أصناف أنظمة الاتصالات حسب اتجاه نقل المعلومات؟ اشرحها مع الرسم.
 - س٨: ما هي الأنظمة الأساسية الأربعة للاتصالات؟ اذكرها مع الشرح.
 - س ٩: ما هي أنواع وتقسيمات إشارات المعلومات؟
 - س ١٠ ما هي أهم الفروقات الأساسية بين أنظمة الاتصالات السلكية واللاسلكية؟
 - س ١١: ما المقصود بالشبكة الحاسوبية؟ اذكر مثالاً توضيحياً عنها.
- س٢١: ماهي أهم الأهداف والأغراض الأساسية لإنشاء الشبكات الحاسوبية؟ اذكر ستة منها؟
- س١٣: اشرح بخطوات كيفية ربط جهازي حاسوب بواسطة موصل ناقل من النوع التوازي؟
- س ١٤: اشرح بخطوات كيفية ربط جهازي حاسوب بواسطة موصل ناقل من النوع التوالي؟
- س ١٠: اشرح بخطوات كيفية ربط جهازي حاسوب بواسطة الموصل الناقل من النوع التوالي العالمي USB?
 - س١٦: ما هي أهم مميزات الربط الشبكي عن طريق الموصل الناقل من النوع التوازي؟
 - س١١: ماهي أهم مميزات الربط الشبكي عن طريق الموصل الناقل من النوع التوالي؟
 - س ١٨: ماهي أهم مميزات الربط الشبكي عن طريق الموصل الناقل من النوع التوالي العالمي USB؟
 - س ١٩: أيهما أكثر أهمية وفائدة للربط الشبكي، الربط التوازي أم التوالي أم التوالي العالمي USB؟
 - س · ٢: هل بالإمكان ربط أكثر من جهازى حاسوب بواسطة ربط شبكى توالى عالمي USB؟ كيف؟

الفصل الثاني أساسيات الشبكات

أهداف الفصل الثاني

من المتوقع إن يتعرف الطالب على مجموعة من المعارف العلمية الخاصة بالتعرف على أساسيات شبكات الحاسوب وأهم المكونات الرئيسة المؤلفة لها.

محتويات الفصل الثاني

- (١-٢) المقدمة
- (٢-٢) المكونات الرئيسة لشبكات الحاسوب
- (٢-٣) المكونات المادية لشبكات الحاسوب
- (٢-٤) المكونات البرمجية لشبكات الحاسوب
 - (٢-٥) وسائط الربط والاتصال الشبكى
 - (٢-٢) أنواع المقابس وطرق ربطها

الفصل الثاني أساسيات الشيكات

(٢-١) المقدمة

تعد المعلومات من أهم مقومات الحياة ومن أبرز ركائز التقدم الحضاري ولها دور رئيس في تطور الحضارات وساهمت بشكل كبير في دفع عجلة التطور ولها ارتباط وثيق بجميع ميادين النشاط البشري، وهي تشكل جزءاً لا يتجزأ من هذا النشاط، فالإنسان يعتمد على المعلومات في جميع نواحي حياته الخاصة والعامة وفي كل خطوة يخطوها، وهكذا كانت المعلومات وما زالت من الظواهر التي صاحبت الإنسان منذ نشوء المجتمعات البشرية عندما وجد الإنسان على وجه الأرض وأحس بحاجته الطبيعية للتعايش والتواصل مع أخيه الإنسان، ومن هنا حرص الإنسان على تبادل المعلومات وتناقلها من جيل لآخر ليفيد ويستفيد.

وقد اتخذت هذه العملية أشكالاً مختلفة ووظفت لها وسائط متنوعة حسب الإمكانات المتاحة للإنسان في كل مرحلة من التاريخ البشري، كما أن هذه الأشكال والوسائط قد مرت بمراحل تطور متعاقبة بحسب تطور الحضارات الإنسانية على مر العصور. فمن الأشكال والوسائل الرمزية والشفاهية والرقم الطينية وجلود الحيوانات في العصور القديمة، ومن المخطوطات في العصور الوسطى تطورت عملية تبادل المعلومات ونشرها إلى الأشكال والوسائل المطبوعة الورقية واللاورقية كالكتب والمجلات والموسوعات والأقراص الليزرية وشاشات طرفيات الحواسيب، والأقمار الصناعية وما سواها من وسائط ونظم نشر المعلومات واقتنائها وخزنها واسترجاعها وبثها.

إن إحدى السمات الرئيسة لعصر المعلومات هي الانتقال إلى عصر اقتصاد المعلومات الذي يركز على المعلومات والاتصالات وليس فقط التركيز على الموارد الطبيعية والقوى العاملة وفي هذا العصر ظهر اهتمام متزايد بالمعلومات كونها ثروة وطنية تؤدي دورًا استراتيجيًا حيويًا في ميادين أنشطة المجتمع، وقد دفع هذا الاهتمام الدول والمؤسسات والأفراد إلى بذل جهود حثيثة في مجالات السيطرة والتحكم بمورد المعلومات على المستويات الوطنية والإقليمية والدولية. وقد نتج عن هذه الجهود العديد من نظم وشبكات المعلومات التعاونية ويأتي الإنترنت في مقدمتها. لذا فإن شبكة الأنترنيت، هي أبرز ثمرة نتجت عن تلاحم تلاث ثورات كونية هي ثورة المعلومات، وثورة الاتصالات، وثورة الحواسيب والشبكات بشكل عام هي تقدم إمكانيات مذهلة في مجال تبادل المعطيات ومجال التعامل مع الملفات لعدد من المستثمرين بأن واحد معا، بالإضافة إلى بساطة المشاركة في الملفات وعموماً يقصد بالشبكة التفاعل المتداخل بين أجهزة معاميوتر أي كيف تعمل الأجهزة فيما بينها ضمن شبكة اتصال لتحسين قدراتك في إنجاز الأمور، وشبكات الكمبيوتر أي كيف تعمل المشركة في أمور مثل معالجة النصوص وبرامج أوراق العمل وفي الطابعات وفي الربط على أجهزة كمبيوتر وشبكات واسعة وأنظمة البريد هي وظيفة شبكة الاتصال. في ظل التطور وفي الربط على أجهزة كمبيوتر وشبكات واسعة وأنظمة البريد هي وظيفة شبكة الاتصال. في ظل التطور وفي الداسوب والمعلوماتية اصبح استخدام شبكات المعلومات ضرورة ملحه لما توفره من مشاركة ومن مشاركة

المعلومات والموارد المتوفرة ضمن الشبكة وسهولة نقل المعلومات وتطوير التفاعل بين المستفيدين من الشبكة وتتيح المشاركة بالمعلومات وموارد الحاسوب، تتكون من جزئيين أساسيين، هما المكونات المادية والمكونات البرمجية، ان ابسط شبكة حاسوب تتكون من جهازي حاسوب وكارت شبكة واسلاك ربط خاصة بالشبكة.

(٢ - ٢) المكونات الرئيسة لشبكات الحاسوب

تتكون شبكات الحاسوب بصورة رئيسة من أجهزة حاسوب آلي، التي من المراد إجراء الربط الشبكي لها حيث تعتبر هذه الأجهزة النواة الأساسية والمقوم الأساسي لإنشاء الشبكة، وبهذا فأنه يمكننا القول بأن إنشاء وبناء أي شبكة حاسوب يتطلب وجود عدة مكونات يمكن تقسيمها إلى مكونات مادية ومكونات برمجية حيث تشمل المكونات المادية من محطات العمل Workstations – الخوادم Servers – وسائط الربط ونقل المعلومات وهي بنوعين سلكية وتشمل (كابلات مجدولة، كابلات محورية، كابلات ألياف ضوئية) ولاسلكية وتشمل (الميكروويف، الأشعة تحت الحمراء، الأقمار الاصطناعية) كما وتشمل المكونات المادية على وصلة الشبكة الذي يسمى بكارت الشبكة، كما وتعتبر أجهزة الربط للشبكات والتي تسمى بالسائدية على وصلة الشبكات المكونات المادية المهمة المستعملة في العديد من الشبكات وبالأخص الشبكات الواسعة.

في حين تتكون المكونات البرمجية من أنظمة التشغيل الخاصة بالشبكات، ومن البروتوكولات التي تحدد أسلوب الاتصال وكيفية تحقيقه، ومن برامج إدارة الشبكات، ومن برامج التطبيقات، و برامج حماية الشبكات.

ولكي تكون عزيزي الطالب على دراية كافية حول كيفية إنشاء شبكات الحاسوب، سنعطيك أولاً شرحاً مفصلاً عن المواصفات الفنية للمكونات المادية للشبكة وطرق ربط هذه المكونات المادية وتثبيتها إضافة إلى تفاصيل مهمة عن كيفية استخدام المكونات البرمجية الخاصة بالشبكات.

(٢ - ٣) المكونات المادية لشبكات الحاسوب

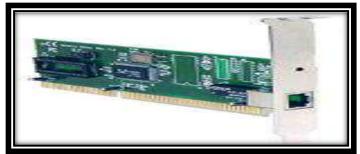
لابد أن تعلم عزيزي الطالب أن إنشاء أو إقامة أي شبكة مهما كان نطاق عملها يتطلب استخدام وربط مكونات وأجزاء مادية Hardware Parts مثل أجهزة حواسيب آلية وأجهزة توزيع إشارة شبكية وموجهات إضافة إلى استخدام الأسلاك الشبكية كجزء أساسي لربط هذه المكونات شبكياً مع بعضها البعض. ندرج لك في أدناه أهم الأجزاء المادية المكونة للشبكات:

- . (Network Interface Card) (NIC) (وصلة ربط الشبكة (وصلة ربط الشبكة)
 - ٢. وسائط الربط ونقل المعلومات (Network Media) .
- ٣. أجهزة ربط الشبكات (Network Devices) (المجمع المركزي Hub، المبدل Switch، الموجه ... الخ).
 - ٤. محطات العمل (Workstations).
 - o. الخوادم (Servers).

Network Adapter Card بطاقة الشبكة (۱-۳-۲)

لكى يتمكن جهاز الحاسوب الآلي من الاتصال بالشبكة لابد له من بطاقة شبكة Network Adapter والتي قد يطلق عليها أيضاً الأسماء التالية:

- .(NIC) Network Interface Card- \
 - .LAN Card- 7
 - .LAN Interface Card- ^{\(\pi\)}
 - LAN Adapter- ٤


وتعتبر بطاقة الشبكة هي الواجهة التي تصل بين جهاز الحاسوب ووسيلة الربط وبدونها لا تستطيع الأجهزة الاتصال فيما بينها من خلال الشبكة، حيث تعتبر بطاقة الشبكة بمثابة الوسيط بين جهاز الحاسوب والشبكة ويتحكم بتدفق البيانات بين الشبكة والحاسوب ويعمل على تحويل الإشارات التي تستخدمها الشبكة (مثل الإشارات الكهربائية، النبضات الضوئية، الأمواج الراديوية) إلى بيانات ثنائية يفهمها الحاسوب وبالعكس، ومن أنواع كارتات الشبكة:

ا. بطاقة شبكة ذو منفذ توصيل نوع BNC كما موضح بالشكل (١-١)، وهو اختصار (British) و المحادث (Naval Connector) في المحادث ا

شكل (٢-١) يمثل كارت شبكة ذا منفذ توصيل نوع BNC

بطاقة شبكة ذو منفذ توصيل نوع RJ45 كما موضح بالشكر (٢-٢)، يستخدم هذا المنفذ مع الموصلات المجدولة (Twisted Pair).

شكل (٢-٢) يمثل كارت شبكة ذا منفذ توصيل نوع RJ45

وظيفة بطاقة الشبكة:

لبطاقة الشبكة وظائف عديدة يمكن إجمالها بما يلي:

- ١ -تحضير البيانات لبثها على الشبكة.
 - ٢ إرسال البيانات على الشبكة.
- ٣ -التحكم بتدفق البيانات بين الحاسوب الآلى ووسط الربط.
- ٤ ترجمه الإشارات الكهربائية الواردة من وسط الربط إلى إشارات رقمية يفهمها معالج الحاسوب الآلي، وعندما تريد إرسال بيانات فإنها تترجم إشارات الحاسوب الآلي الرقمية إلى نبضات كهربائية يستطيع وسط الربط حملها.

كل بطاقة شبكة تمتلك عنوان شبكة فريد يحدده معهد Institute Of Electrical And) IEEE عبد يحدده معهد يخصص مجموعة من العناوين لكل مصنّع من مصنعي بطاقات (Electronic Engineers)، و هذا المعهد يخصص مجموعة من العناوين لكل مصنّع من مصنعي بطاقات الشبكة، حيث يكون هذا العنوان مكوناً من 48 Bit ويكون مخزن داخل ذاكرة القراءة فقط ROM في كل بطاقة شبكة يتم إنتاجها، ويحتوى أول Bit على تعريف للمصنع بينما تحتوى الـ 24 Bit الأخرى على الرقم المتسلسل للبطاقة. وتقوم البطاقة بنشر عنوانها على الشبكة، مما يسمح للأجهزة بالتخاطب فيما بينها وتوجيه البيانات إلى وجهتها الصحيحة.

وللتعرف على كيفية تثبيت بطاقة الشبكة في جهاز الحاسوب الآلي، سنتطرق عزيزي الطالب إلى تمرين عملي نوضح من خلاله طرقة تثبيت هذه الوصلة وكيفية تعريفها في نظام التشغيل الموجود في جهاز الحاسوب وهو نظام Windows Xp باستخدام القرص الليزي التعريفي المرفق مع بطاقة الشبكة، حيث أن التعريف الصحيح لهذه البطاقة سيؤدي إلى ظهور شكل وأيقونة الشبكة في شريط الأدوات الظاهر في أسفل واجهة سطح المكتب.

(Network Media) الربط ونقل المعلومات (۲-۳-۲) وسائط الربط ونقل المعلومات

وتشمل الوسائط السلكية مثل الموصلات المحورية والموصلات المجدولة بأنواعها، أما الوسائط اللاسلكية فتشمل الموجات الميكروية والأشعة تحت الحمراء والأقمار الصناعية، وسوف نقدم لك عزيزي الطالب شرحاً مفصلاً عن هذه الأنواع في الصفحات القادمة.

(Network Devices أجهزة ربط الشبكات (٣-٣-٢)

وهي أجهزة تستخدم لربط العديد من الحواسيب وأجهزة في الشبكة وتشمل أجهزة:

التمثيل الصورى للجهاز اسم الجهار الرابط ومجال استخدامه ۱- المكررات Repeaters يقوم بتكبير الإشارات مما يمكنها من الوصول لمسافات أطول داخل الموصلات وذلك عن طريق إعادة إرسالها، بحيث يمثل كل Repeater نقطة انطلاق جديدة لهذه الإشارات فيزيد من مسافة وصولها ومن خصائص الـ Repeater أنه يقوم بزيادة عدد الأجهزة المستخدمة في الشبكة يستخدم في أنظمة الموصلات الخطية مثلEthernet، والـ Repeater يُعد من أجهزة الطبقة الأولى الـPhysical Layer، و ليس له أي علاقه بالبروتوكول المستخدم ولا بطرق الوصول للبيانات ذلك لأنه فقط يقوم بتقوية الموجات وذلك لإرسالها عبر الموصلات. المجمعات المركزية Hubs وظيفة الـ Hub هي ربط العديد من حواسيب وأجهزة الشبكة مع بعضها كما يقوم بتكبير الإشارة مثل الـ Repeater ولكن لأكثر من منفذ كما يوجد منه العديد من الأشكال ذات منافذ توصيلية عديدة منها ١٦،١٢،٨،٤ منفذ، ومن خصائص الـ Hub أنه يزيد من عدد الأجهزة المستخدمة في الشبكة، وهو من أجهزة الطبقة الأولى Physical .Layer الجسور Bridges يسمح الـ Bridgeبربط اثنين أو أكثر من الشبكات المحلية المختلفة، و أيضاً يسمح Bridge بتقسيم الشبكات المحلية الكبيرة إلى شبكتين منفصلتين وذلك لتحسين الأداء، ويعتبر الـ Bridge من أجهزة الربط الشبكي التي تعمل في الطبقة Layer Data Link وهي الطبقة الثانية، ويعتمد على عنوان الـ MAC في توجيه ونقل المعلومات.

	المحولات Switch
	يقوم الـ Switch بربط العديد من الأجهزة
The state of the s	ببعضها مثل الـ Hubكما يقوم بتوجيه البيانات
	معتمداً على العنوان الفيزيائي MAC
### C.	Address ومن أهم مميزاته أنه سهل التحميل
plan	و سرعته عالية في توجيه البيانات، وهو يعمل
	في الطبقة الثانية Data Link Layer.
1000	
	الموجهات Routers
	Routers - 5.5-
	الغرض من الـ Router هو ربط شبكة محلية
	الغرض من الـ Router هو ربط شبكة محلية
	الغرض من الـ Router هو ربط شبكة محلية LAN بشبكة واسعه WAN بشرط توافق
	الغرض من الـ Router هو ربط شبكة محلية LAN بشبكة واسعه WAN بشرط توافق البروتوكولات يعتبر الـ Router العمود
	الغرض من الـ Router هو ربط شبكة محلية LAN بشبكة واسعه WAN بشرط توافق البروتوكولات يعتبر الـ Router العمود الفقري في الإنترنت معتمداً على بروتوكول الـ
	الغرض من الـ Router هو ربط شبكة محلية LAN بشبكة واسعه WAN بشرط توافق البروتوكولات يعتبر الـ Router العمود الفقري في الإنترنت معتمداً على بروتوكول الـ IP ، و الـ Router من أجهزة الطبقة الثالثة

وتحديد أنسب مسار.

يُعدُ هذا الجهاز نقطة اتصال بين شبكتين تختلفان في النوع والبروتوكول و الطبيعة الجغرافية، وهو يعمل في الطبقة السابعة Application Layer ويعتمد على عنوان الـ MAC والعنوان IP في توجيه المعلومات.

Workstations محطات العمل (۲-۳-۲)

عندما يتم ربط جهاز الحاسوب بشبكة ما فإنه يصبح عضواً في هذه الشبكة ويسمى Workstations ومحطات العمل يمكن أن تعمل بأنظمة (- BSD - Linux - Windows - Dos Macintosh - OS/2) وقد تكون هذه المحطات لا تمتلك وحدات تخزين وفي هذه الحالة تقوم بتخزين الملفات على خادم الملفات، ومحطات العمل هذه تعتبر رخيصة الثمن وتقدم طريقة تأمين عالية لأن المستخدم لا يستطيع تنصيب أي ملفات على المحطة.

(۲-۳-۲) الخوادم Servers

وهي المختصة بتشغيل نظام تشغيل الشبكة Network Operating System وتقوم بتقديم خدمات لكل محطات العمل الموجودة على الشبكة، ومن الخدمات التي تقدمها:

- ١ تخزبن الملفات.
- ٢ -إدارة المستخدمين.
 - ٣ -التأمين.
- ٤ الأوامر الخاصة بالشبكات.
 - ٥ -إدارة النظام.

وأيضاً من أهم أنواعها:

- File Server خادم الملفات
- .Print Server خادم الطباعة
- .Database Server خادم قواعد البيانات
- . Administration Server خادم الإدارة

في الفصل القادم سوف نتكلم عزيزي الطالب بالتفصيل عن أهم المزايا والمواصفات الفنية التي تمتاز بها هذه الأنواع المتخصصة من الخوادم.

رقم التمرين: (۲ – ۱) الزمن المخصص: ٣ ساعات

اسم التمرين: تركيب بطاقة الشبكة بجهاز الحاسوب

مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يكون الطالب قادراً على تركيب بطاقة الشبكة في لوحة الأم لجهاز الحاسوب

ثانيا: التسهيلات التعليمية:

١ -جهاز حاسوب آلي ٢- بطاقة شبكة ٣- أدوات (مفك براغي)

ثالثًا: خطوات العمل، الرسومات

ارتد بدلة العمل الملائمة لجسمك

أطفئ جهاز الحاسوب (علبة النظام) وافصله عن مصدر الطاقة الكهربائية الخارجي ثم ضع جهاز الحاسوب على منضدة خشبية أو منضدة معزولة إستاتيكياً.

افتح البراغي الموجودة خلف جهاز الحاسوب وعددها أثنان كما موضح بالشكل المجاور.

ركب الغطاء الخارجي لجهاز الحاسوب وأربط البراغي.

8 صل علبة النظام بمصدر للطاقة الكهربائية وشغل جهاز الحاسوب، سيتم إضافة جهاز جديد (add) من خلال الكشف عن محرك بطاقة الشبكة تلقائياً أو من خلال القرص المرفق مع بطاقة الشبكة.

. . ..

- ما هو الغرض الرئيس من ربط بطاقة الشبكة؟
 - ماهى أنواع بطاقات الشبكة؟
- كيف تستدل على صحة تعريف بطاقة الشبكة؟
- ناقش حالة عدم تعرف بطاقة الشبكة في النظام Windows XP رغم إجراء مراحل تنصيب وتثبيت التعريف وكيف تتم معالجة هذه الحالة بنظرك عزيزي الطالب؟

		<u>ب</u>	استمارة قائمة الفحم	
	نة:	المرد	الفاحصة: طالب:	
			ص:	التخص
			تمرين:	اسىم الذ
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم
		%°	ارتداء بدلة العمل	١
		%1 <i>o</i>	مراحل تثبيت بطاقة الشبكة في جهاز الحاسوب	۲
		%10	مراحل تعريف بطاقة الشبكة في نظام التشغيل Windows Xp	٣
		%۱.	المناقشة	٤
		%0	الزمن المخصص	٥
			رع	المجمو
	•	التوقيع	فاحص	اسم الذ
		·	ć	التاريخ

(٢ - ٤) المكونات البرمجية لشبكات الحاسوب

تشمل المكونات البرمجية على كل من أنظمة التشغيل والبروتوكولات والبرامج التطبيقية الأخرى يمكن إدراجها في ما يلي:

:Network Operating System أنظمة تشغيل الشبكات

أنظمة تشغيل الشبكات القديمة كانت تقدم خدمات بسيطة وبعض من وسائل التأمين ولكن نظراً لازدياد طلبات المستخدم فإن في الشبكات الحديثة أنظمة التشغيل قد صممت لتلبي هذه الطلبات و فيما يلي بعض هذه الخصائص الضرورية الموجودة في أنظمة التشغيل الخاصة بالشبكات الحديثة وهي:

:Files Services الملفات

في الشبكات يستطيع المستخدم الوصول إلى البرامج والملفات المخزنة على الخادم المركزي Server ولأن المستخدمين يأمنون على الملفات الخاصة بهم عند الخادم Server فلابد من وجود طرق وأساليب لحماية الملفات مثل Backup ووسائل التأمين الأخرى التي يجب أن تتبع ولذلك فإن أنظمة تشغيل الشبكات الحديثة يوجد بها الإمكانيات التي توفر الحماية اللازمة للبرامج و الملفات.

Y - درجة إحتمال أخطاء النظام System Fault Tolerance:

لابد أن يكون هناك أسلوب أو طريقة في أنظمة تشغيل الشبكات الحديثة تضمن استمرار العمل في الشبكة حتى لو وجد أي عطل في أحد مكونات الشبكة ومثال على ذلك وجود نسخة أخرى من وحدة القرص الثابت تسمى Mirror لتضمن استمرارية العمل في حالة عطل القرص الصلب الرئيس.

"Security - الآمنية

يوجد في أنظمة تشغيل الشبكات وسائل عديدة لحماية البيانات على الخادم Server منها:

- اسم المستخدم User Name.
 - كلمة المرور Password.
- تحديد مساحة تخزينية على القرص الصلب الموجود على الخادم لكل مستخدم ولا يستطيع أي مستخدم أخر الوصول اليها.
- أنظمة التشفير الموجودة على الخادم و ذلك لحماية البيانات في أثناء وجودها على كيبلات الشبكة.
- مشاركة الموارد Resource Sharing إتاحة الموارد الموجودة على الشبكة لكل المستخدمين بنظام سماحي معين ومن هذه الموارد الطابعة والراسم Plotter.
- الوصول للبيانات عن بعد Remote Access هذه الخاصية تسمح لبعض المستخدمين للوصول للخادم على الشبكة عن بعد وذلك بنظام سماحي معين.
- وسائل إدارة الشبكة Network Management Tools نظراً لكبر حجم الشبكة مما يجعل عملية إدارتها ليس من السهل فإنه يوجد الآن برمجيات خاصة ومتاحة مع أنظمة تشغيل الشبكات لإدارة

الشبكة ومتابعة الأعطال على الشبكة ومعرفة سبب العطل وتفاديه وتوجد أنظمة خاصة بذلك تعتمد على نظام الذكاء الاصطناعي Artificial Intelligence.

+ بروتوكولات الشبكة Network Protocols:

البروتوكولات هي عبارة عن مجموعة من القوانين والإجراءات التي تستخدم للاتصال، فهي تحدد القوانين و الإجراءات التي تتحكم بالاتصال والتفاعل بين أجهزة الحاسوب المختلفة على الشبكة وهناك بعض الأمور يجب معرفتها فيما يخص البروتوكولات هي:

- هناك الكثير من البروتوكولات المختلفة في عملها و وظيفتها .
- هناك عدة بروتوكولات من الممكن أن تعمل معاً لتنفيذ عمل ما .
 - لكل بروتوكول مزاياه و عيوبه.

ويطلق على مجموعة البروتوكولات التي تعمل سوياً بإسم Protocol Stack أو يمكن تخيل هذه المجموعة من البروتوكولات كبناء مكون من عدة طوابق وفي كل طبقة يوجد بروتوكول معين يقوم بوظيفة محددة ويتكامل مع غيره من البروتوكولات في الطوابق الأخرى.

إن العملية الكاملة لنقل البيانات على الشبكة تمر بمجموعة من الخطوات، وفي كل خطوة معينة تنفذ مهام محددة لا يمكن تنفيذها في خطوة أخرى، ولكل خطوة بروتوكول محدد أو مجموعة بروتوكولات تحدد كيفية تنفيذ المهام المتعلقة بهذه الخطوة، كما أن هذه الخطوات تكون متشابهة لكل جهاز على الشبكة، كما يجب ملاحظة أن الجهاز المرسل يقوم بإتباع هذه الخطوات من الأعلى إلى الأسفل بينما يقوم الجهاز المستقبل بإتباع هذه الخطوات بشكل معكوس من الأسفل إلى الأعلى، وهذه البروتوكولات يتم إنشاؤها وتكوينها بحيث أن تكون متوافقة مع أي نوع من محطات العمل Work Station وهذه البروتوكولات مسؤولة عن تحديدها مؤسسات عالمية خاصة بذلك و من أمثلتها:

- ISO = International Standard Organization.
- IEEE = Institute Electronically and Electrical Engineers.
- ITU = International Telecommunication Union.

مسؤوليات ومهام البروتوكولات:

في الجهاز المرسل تكون البروتوكولات مسؤولة عن القيام بالمهام التالية:

- ١ تقسيم البيانات إلى حزم و إضافة معلومات العنونة إلى تلك الحزم.
 - ٢ تحضير البيانات للإرسال.

بينما تقوم البروتوكولات في الجهاز المستقبل بعمل التالي:

- ١ التقاط حزم البيانات من وسط الاتصال وإدخالها إلى جهاز الحاسوب عبر بطاقة الشبكة.
 - ٢ -إدخال حزم البيانات إلى داخل جهاز الحاسوب عبر بطاقة الشبكة.
 - ٣ تجميع كل حزم البيانات المرسلة وقراءة معلومات التحكم المضافة إلى هذه الحزم.
 - ٤ نسخ البيانات من الحزم إلى ذاكرة مؤقتة لإعادة تجميعها.

تجميع البيانات و تمريرها إلى البرامج في صورة مفهومة قابلة للاستخدام.
 بعض أنواع البروتوكولات المستخدمة في شبكة الإنترنت:

- ▼ TCP / IP: يعد الـ TCP / IP البرتوكول الأمثل لوصل الأنواع المختلفة من أجهزة الحاسوب وأنظمة التشغيل المتباينة وهو البروتوكول المستخدم على الإنترنت.
- △ APPLE TALK: في حالة وجود أجهزة Apple Macintosh على الشبكة وهناك حاجة للوصول إلى موارد WIN Server فيجب تشغيل APPLE TALK على الخادم ومن الضروري استخدام هذا البرتوكول أيضاً في حالة استخدام أي من تطبيقات APPLEعلى الشبكة.
- FTP: يستخدم للنقل عبر الإنترنت من خلال منفذ ٢١ في الغالب و يتميز بسرعته ولكن يعيبه أنه يقوم بإرسال المعلومات غير المشفرة.
- ◄ HTTP: وهو البروتوكول الأكثر شيوعاً على الإنترنت وهو طريقة لتصدير الملفات عبر الشبكة بل ويمكن توليد هذه الملفات عبر لغة برمجة أو من قاعدة بيانات ويتم الوصول لهذه الخدمة عن طريق متصفح رسومي مثل Mozilla أو متصفح نصى مثل Links.

♣برامج إدارة الشبكات:

هي برامج تقوم بإدارة الشبكة وتعطي للمستخدمين الصلاحيات التي تمكنهم من العمل على الشبكة كما تقوم بتنظيم العمل بينهم وتنظيم مشاركة موارد الشبكة من برمجيات ومكونات مادية فيما بينهم ومن أهم هذه البرامج Easy Cafe وبرنامج Hicrosoft LAN Manager

➡ برامج التطبیقات:

هي البرامج التي تمكن المستخدمين من الإفادة من برمجيات الشبكة المختلفة مثل تصفح صفحات الويب وهذه الخدمة تتطلب برنامج مستعرض الويب مثل (Net Scape - Internet Explorer - Mozilla و فدمة (Firefox و كذلك خدمة البريد الإلكتروني والتي تستلزم برامج خاصة مثل Outlook Express وخدمة المحادثات ومن أمثلة برامجها Net Meeting.

♣برامج حماية الشبكات:

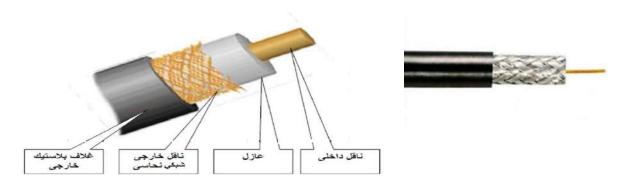
هي برامج تقوم بتوفير مستوى عال من الأمان للشبكة لحمايتها من مخاطر الفيروسات والاختراقات والتجسس ومن وصول الأشخاص غير المرغوب فيهم إلى الشبكة ومن أهم البرامج المستخدمة في حماية الشبكات برنامج Norton Internet Security.

(٢ - ٥) وسائط الربط والاتصال الشبكي

تعرف وسائط الربط والاتصال الشبكي بأنها تلك الوسائل التي تقوم بإرسال ونقل المعلومات بين الأجهزة المختلفة في الشبكات مهما كان نطاق عمل هذه الشبكات، ومن الأمور الفنية الرئيسة الواجب توافرها في وسيلة الاتصال هو المحافظة على إيصال الإشارات المعلوماتية دون حدوث توهين أو ضعف فيها خلال عملية النقل، بالإضافة إلى المحافظة على سرية المعلومات المنقولة، وبصورة عامة يمكن أن تقسم وسائط الربط والاتصال الشبكي اللي قسمين رئيسين هما:

- ١ وسائط الربط و الاتصال السلكية.
- ٢ وسائط الربط و الاتصال اللاسلكية.

وسوف نتكلم عزيزي الطالب بالتفصيل عن كل نوع من هذه الأنواع مع تحديد الخصائص والمواصفات الفنية لكل نوع، إضافة إلى تقديم بعض التمارين العملية لتحقيق ومعرفة كيفية استخدام النوع الأول في الربط الشبكي.


(٢-٥-١) وسائط الربط والاتصال السلكية

نقصد بوسائط الربط والاتصال السلكية كافة الموصلات (الكيبلات) التي تساهم في الربط الشبكي وإيصال المعلومات وتشاركها بين الأجهزة المختلفة في الشبكة، حيث تقسم هذه الوسائط إلى أنواع عديدة أهمها:

- الموصلات المحورية (Coaxial cables).
- الموصلات المجدولة (Twisted Pair Cables): ويمكن أن تقسم بدور ها إلى ثلاثة أقسام هي:
 - ب غير المعزولة (Unshielded Twisted Pair (UTP) غير المعزولة (
 - ♦ الموصلات المجدولة المعزولة (Shielded Twisted Pair (STP).
 - ❖ الموصلات المجدولة الملفوفة (Folded Twisted Pair (FTP)
 - موصلات الألياف الضوئية (Fiber Optic Cables).

♣ الموصلات المحورية Coaxial Cable:

هذا النوع من الموصلات يتكون من سلك نحاسي محوري مسؤول عن نقل الإشارة الكهربائية مغطى بمادة عازلة ومحاط بشبكة سلكية ملفوفة بشكل ضفائر حول هذا العازل تمثل القطب الأرضي للسلك، تقوم الضفائر (الشبكة) المعدنية بحماية المحور من تأثير التداخل الكهرومغناطيسي EMI والإشارات التي تتسرب من الأسلاك المجاورة التي تسمى Crosstalk، تحاط هذه الشبكة بغطاء خارجي مصنوع من المطاط أو البلاستيك أو التفلون Teflon، إضافة لذلك تستخدم بعض الموصلات المحورية طبقة أو طبقتين من القصدير كحماية إضافية.

شكل (٢ - ٣) يوضح الموصلات المحورية المستخدمة في الربط الشبكي

يوجد نوعان من هذه الموصلات، نوع ذو قطر صغير يستخدم للمسافات القصيرة والسرعة الأقل، وهو سلك مرن رقيق يصل قطره إلى ٢٠٠ سم يستخدم عادة في شبكات 10Base2 (وهي من أنواع شبكات الإيثرنت سيتم التطرق لها في الفصل الخامس) ويوصل مباشرة إلى بطاقة الشبكة، ومن مزايا هذا النوع من الموصلات أنه بإمكانه إيصال الإشارة الكهربائية في السلك لغاية ٢٠٠ متر دون أي تخميد فيها ويستخدم مقبس ربط من نوع BNC.

شكل (٢ - ٤) يوضح الموصلات المحورية الرقيقة المستخدمة في الربط الشبكي 10Base2مع مقبس الربط

أما النوع الآخر من الموصلات المحورية فهي ذات قطر سميك، حيث تتكون من سلك ثخين متصلب وغير مرن ويصل قطره إلى 1,7 سم، يستخدم عادة في شبكات 10Base5 ولأنه أسمك من النوع الأول فإنه يستطيع إيصال الإشارة الكهربائية إلى مسافات أبعد تصل إلى 0.0 متر دون توهين (تخميد) للإشارة.

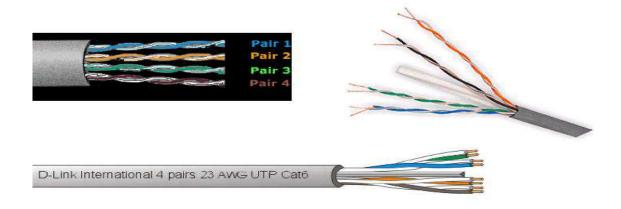
10Base5 يوضح الموصلات المحورية الرقيقة المستخدمة في الربط الشبكي المحورية الرقيقة المستخدمة في الربط الشبكي

وندرج لك عزيزي الطالب في أدناه أهم المواصفات الكهربائية واستخدامات الموصلات المحورية:

- ۱) ٥٠ أوم RG-8 و RG-11 (للسلك الثخين)
 - ۲) ٥٠ أوم RG-58 (للسلك الرقيق)
 - ٣) ٧٥ أوم RG-59 لسلك التلفاز

٤) ٩٣ أوم RG-62 تستخدم لمواصفات شبكة RG-62

أما استخدامات الموصلات المحورية وفوائدها فيمكن إجمالها بما يلى:


- ١) نقل الصوت والصورة و البيانات.
- ٢) إيصال البيانات لمسافات أبعد من مدى الأسلاك المجدولة.
 - ٣) توفر أمن معقول للبيانات.
 - ٤) تستخدم في أنظمة التلفزيون و أجهزة الاستقبال.
 - ه) تستخدم في أنظمة التلفزيون الكيبلي CCTV.
 - ٦) تستخدم في أنظمة الشبكات اللاسلكية Wi-Fi.

الموصلات المجدولة Twisted Pair Cable الموصلات

هي عبارة عن أسلاك مجدولة من سلكين نحاسين حيث تكون ملتوية على بعضها البعض، يستخدم هذا النوع من الموصلات بشكل أكثر من الموصلات المحورية وذلك لتميزها بسهولة التركيب والصيانة وقابلية التوسع وهو الأكثر استخداما في الشبكات المحلية. يشبه هذا النوع من الموصلات سلك الهاتف إلا أنه يحتوي على أربعة أزواج (ثمانية أسلاك) من الأسلاك النحاسية، حيث يتكون كل زوج من هذه الأزواج من سلكين نحاسيين معزولين وملفوفين بشكل حلزوني على بعضهما البعض، حيث يستعمل أحد السلكين في نقل البيانات والآخر في استقبال البيانات وتبلغ سرعة نقل هذه البيانات في هذه الأسلاك Mbps (مئة ميجابت في الثانية)، ويمكن تقسيم هذا النوع من الموصلات إلى ثلاثة أنواع اعتمادا على نوع وطبقة تغليف الأسلاك الداخلية المجدولة وكما يلى:

١- الموصلات المجدولة الغير معزولة (Unshielded Twisted Pair (UTP):

يتكون الموصل أو الكيبل المجدول الغير معزول من ثمانية أسلاك نحاسية رفيعة موضوعة داخل عازل خارجي ويتم جدل كل زوج من هذه الأسلاك لحماية البيانات من التداخل والضوضاء، تستخدم الموصلات المجدولة هذه في الشبكات المحلية من النوع Star، وتنقل البيانات بسرعة فعلية تصل إلى Mbps بحد أقصى لطول الموصل m 100، تستخدم الموصلات المجدولة وصله نوع RJ45.

شكل (٢-٢) يمثل المقطع الطولي للموصل المجدول غير المعزول

Unshielded Twisted Pair (UTP)

شكل (٧-٧) يمثل حالة الجدل في السلك المجدول غير المعزول

مميزات هذا الموصل:

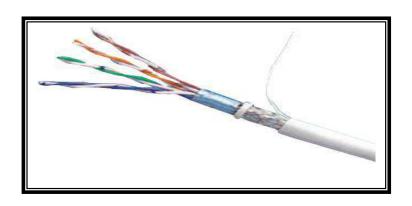
- ١ -أرخص أنواع الموصلات سعراً.
- ٢ أكثر أنواع الموصلات مرونة و أكثر ها قابلية للثني.
 - ٣ سهولة التركيب والاستخدام.
 - ٤ -أكثر الأنواع استخداما.

مساوئ هذا الموصل:

- ١ المدى المسموح به لنقل البيانات ضئيل.
 - ٢ -سرعة نقل البيانات بطيئة.
- ٣ -أكثر عرضة للتداخل لأنه رديء العزل.

وقد قامت جمعية الصناعات الإلكترونية وجمعية صناعات الاتصال بتقسيم الموصلات الثنائية المجدولة غير المعزولة إلى عدة أصناف طبقاً لمدى عملها ضمن نطاق ترددي معين بالإضافة إلى بعض المواصفات الفيزيائية والميكانيكية وهو ما يسمى في عالم أسلاك الشبكة بالمصطلح CAT اختصارا لكلمة كركافي الفيزيائية أو الصنف، وفي أدناه أهم الأصناف واستخداماتها:

- () CAT1 يستخدم لنقل الصوت فقط و لا تستطيع نقل البيانات
 - 4Mbps يستخدم لنقل البيانات بسرعة CAT2 (٢
 - 10Mbps يستخدم لنقل البيانات بسرعة CAT3 (٣
 - ٤) CAT4 يستخدم لنقل البيانات بسرعة CAT4
- مناف البيانات بسرعة 100Mbps وهي أكثر الأسلاك شيوعاً واستخداما
 - 100Mbps يستخدم لنقل البيانات بسرعة CAT5e (٦
 - 1Gbps يستخدم لنقل البيانات بسرعة CAT6 (٧


10Gbps يستخدم لنقل البيانات بسرعة CAT7 (٨

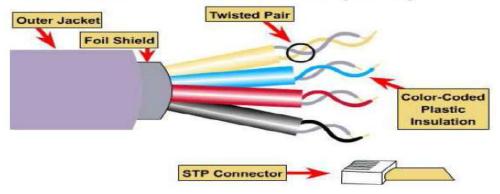
ولابد الإشارة عزيزي الطالب إلى أن الهدف الرئيس من الجدل الحلزوني لهذه الأزواج هو لغرض:

- التقليل من تأثير الأسلاك في بعضها عند نقلها للإشارة الكهربائية المتمثلة في البيانات المتبادلة بين أجهزة الشبكة.
 - ٢) مقاومة التشويش الخارجي.

٢- الموصلات المجدولة المعزولة (Shielded Twisted Pair (STP)

الموصلات المجدولة المعزولة تشبه غير المعزولة ولكن يحاط فيها الثمانية أسلاك النحاسية بطبقة عازلة من الألومنيوم ويوجد طرف أرضي للتخلص من التداخلات غير المرغوب فيها. يستخدم كيبل STP في شبكات الحكالة المحالة الموصل Token Ring .

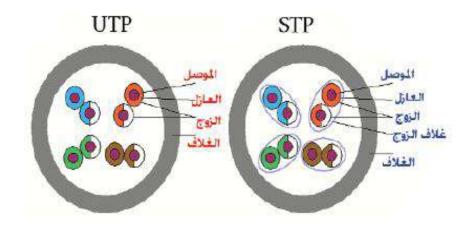
STP يمثل الموصل المجدول معزول $(\Lambda-1)$


مميزات هذا الموصل:

- ١ أسرع أنواع الموصلات النحاسية في نقل البيانات بعد الألياف الضوئية.
 - ٢ أقل عرضة للتداخلات والموجات الكهرومغناطيسية.
 - ٣ العزل الجيد.
 - ٤ أقل عرضة للتجسس وسرقة المعلومات.

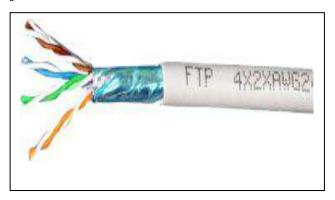
مساوئ هذا الموصل:

- ١ -صعوبة تركيب الموصل.
- ٢ أقل مرونة من الموصل UTP.
 - ٣ غالي الثمن.


Shielded Twisted Pair (STP)

شكل (٢-٩) يمثل حالة الجدل في الموصل المجدول المعزول STP

تتفوق الموصلات المزدوجة المجدولة من النوع STP على الموصلات من النوع UTP بعدة مزايا مهمة يمكن إجمالها بما يلي:


- 1) أن الموصلات من النوع STP أقل عرضة للتداخل الكهرومغناطيسي.
- ٢) أن الموصلات من النوع STP تستطيع دعم الإرسال لمسافات أبعد من النوع UTP .
- ٣) أن الموصلات من النوع STP تستطيع في بعض الظروف توفير سرعات بثّ أكبر من النوع الثاني.

شكل (٢-١٠) يوضح الفرق بتغليف الأسلاك الداخلية بين النوع UTP والنوع STP

"- الموصلات المجدولة الملفوفة (Folded Twisted Pair (FTP)

يكون تركيب هذا الموصل نفس تركيب موصل UTP مع إضافة طبقة عازلة من الألومنيوم حول الأسلاك المجدولة لمنع و تقليل الضوضاء و التداخلات الخارجية لكن لا يوجد به طرف أرضي.

شكل (٢-١) يمثل الموصل المجدول المعزول الملفوف FTP

مميزات هذا الموصل:

- ١ العزل الجيد و ذلك لوجود طبقة من الألومنيوم.
 - ٢ سهولة التركيب والاستخدام.
- ٣ أكثر مرونة من الموصل STP وأقل من UTP.
 - ٤ أقل تكلفة من المو صل STP.

مساوئ هذا الموصل:

- ا -قليل الاستخدام نظراً لأنه غير تام العزل كونه يحاط بطبقة عازلة من الالمنيوم حول الاسلاك المجدولة ولا يحاط بكل ثمانية اسلاك نحاسية اضافة الى أن لايوجد به طرف ارضي كما في الكيبل STP .
 - ٢ -سرعة نقل البيانات محدودة.

موصلات الألياف البصرية Fiber Optic Cable:

يستخدم هذا النوع الموصلات كمصدر لنقل المعلومات بدرجة عالية من الدقة، حيث يتألف هذا الموصل من جدائل طويلة مصنوعة من الزجاج سمك الواحدة منها لا يتعدى سمك الشعرة وهذه الجدائل توضع بهيئة حزمة تسمى Fiber Cable، أي أن الليف الضوئي يكون محاطاً بجزء عاكس وذلك لضمان عدم تشتت الضوء ومن ثم يغلف بمادة واقية من البلاستك، ويتراوح قطر الموصل ما بين ٢ إلى ١٢٥ مايكرومتر، ويوجد منه نوعان أحدهما أحادي يستخدم للمسافات الطويلة والآخر متعدد يستخدم للشبكات المحلية، والشكل التالي يوضح مقاطع مختلفة لهذا النوع من الموصل مع شكل مقابس الربط الخاصة به.

شكل (٢-٢١) يوضح مقاطع مختلفة من موصلات الألياف البصرية

و من المزايا التي تنفرد بها موصلات الألياف البصرية عن غيرها من الموصلات الأخرى هي:

- ١) سرعة إرسال البيانات مرتفعة جداً تصل حالياً إلى ١٠٠٠ ميجابت في الثانية نظراً لسرعة الضوء.
 - ٢) القدرة على حمل إشارات أكثر بكثير مما تحمله أسلاك النحاس.
 - ٣) حماية عالية ضد التداخل الكهرومغناطيسي.
 - ٤) معدلات التخميد فيها منخفضة جداً.
- مستوى أمن عالي جداً ضد التصنت، وذلك لأن الإشارة في هذه الأسلاك عبارة عن نبضات ضوئية ولا تمر بها أي إشارات كهربائية.
 - ٦) إمكانية تمديد الموصل حتى ١٢٠ كم دون انخفاض ملحوظ في مستوى الإشارة.
 - ٧) الحجم الصغير والوزن الخفيف نظراً لدقة الألياف.

أما مساوئ موصلات الألياف الضوئية يمكن حصرها بأن تركيبها وصيانتها أمر في غاية الصعوبة.

(٢-٥-٢) وسائط الربط والاتصال اللاسلكية

وهي من وسائط الربط والاتصال الحديثة والكثيرة الاستخدام حاليا، حيث تحقق هذه الوسائل الربط الشبكي والاتصال دون استخدام الأسلاك في الربط بل تعتمد آلية الاتصال على إرسال الإشارات عبر الهواء وباستخدام تقنيات فنية خاصة تمكن هذه الإشارات من الوصول إلى محطاتها النهائية بكل كفاءة ودون توهين وضعف فيها، يشمل هذا النوع من وسائل الاتصال على:

- الموجات متناهية الصغر الميكروية Microwave.
 - الأشعة تحت الحمراء Infrared.
 - الأقمار الصناعية Satellites

♣ الموجات متناهية الصغر الميكروية Microwave:

يمكن تقسيم موجات الـ Microwave إلى نوعين:

١- الإرسال الأرضى:

ويتميز هذا النوع من الإرسال بما يلي:

- ❖ يتم الإرسال الأرضى باستخدام هوائي Antenna فوق أبراج الإرسال و الاستقبال.
- ❖ سرعة نقل البيانات ففي الإرسال الأرضي تعتمد على التردد وتتراوح من Mbps الى 1 Gbps 1.
- ♦ الموجات الأرضية تتأثر بالتداخل الكهرومغناطيسي وتعتمد على التردد المستخدم و قدرة الإرسال وحجم هوائي الاستقبال وحالة الطقس وهي عرضة للتجسس.

٢- الإرسال عبر الأقمار الصناعية:

ويتميز هذا النوع من الإرسال بما يلي:

- ❖ عالى التكلفة حيث أن إنشاء محطات الأقمار الصناعية تكون مكلفة.
 - پنم استخدامه عند الأرسال عبر مسافات بعیدة جداً.
 - ❖ تحتاج تركيب و صيانة المحطات إلى خبرات عالية.

توجد هناك طريقتان لإرسال الأشعة تحت الحمراء وهي:

١ - الإرسال من نقطة إلى نقطة:

حيث يكون المرسل و المستقبل على خط نقل واحد بسرعة من 10 Kbps إلى 16 Mbps .

٢ - الإرسال الإذاعى:

حيث توفر حرية أكثر بنشر الأشعة لالتقاطها من أي مكان بسرعة نقل Mbps .

♣الأقمار الصناعية Satellites:

تُعدُ الأقمار الصناعية وسيلة حديثة من وسائل الاتصالات عن بعد التي يزداد انتشارها حالياً في إرسال و استقبال البيانات و المعلومات، والقمر الصناعي ما هو إلا شيء مادي يدور حول الأجسام السماوية في مدار ثابت خاص به و يستخدم في مجال الاتصالات.

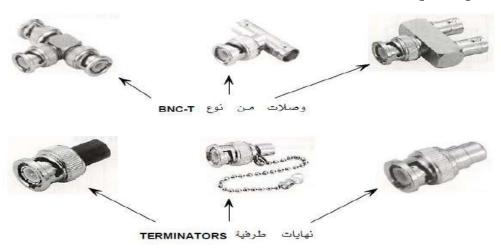
والقمر الصناعي عبارة عن جهاز إلكتروني مزود بوحدات إرسال واستقبال البيانات وأجهزة تكبير وأجهزة خلايا شمسية لتوليد الطاقة اللازمة لتشغيل هذه الوحدات وهذا الجهاز مزود بمجموعة من الهوائيات تماثل هوائي التليفزيون ويطلق القمر الصناعي بواسطة صاروخ لكي يضعه في المدار الجوي فوق الأرض ليدور بسرعة ثابتة تتفق مع دوران الأرض وتستخدم المحطة الأرضية في إرسال واستقبال البرامج و المعلومات من وإلى القمر الصناعي.

(٢ - ٢) أنواع المقابس وطرق ربطها

يوجد عزيزي الطالب أنواع عديدة من المقابس (الفيش) المستخدمة في الربط الشبكي ولكن أهم هذه الأنواع هو:

- ١ -مقبس BNC (الخاصة بالموصلات المحورية).
- ٢ مقبس RJ45 (الخاصة بالموصلات المجدولة).

بالنسبة إلى النوع الأول BNC ومثلما تطرقنا سابقاً فأن الموصلات المحورية تستخدم مشابك أو وصلات ربط (مقابس) خاصة بها تستعمل لوصل الأسلاك معاً وشبك الأجهزة معها تسمى هذه المشابك BNC وهي مختصر كلمات British Naval Connectors، أما عن طريقة تقييش هذا النوع فتتم من خلال أخذ كيبل محوري ذي طول مناسب وفق مواصفات فنية خاصة بالربط الشبكي، ومن ثم رفع الغلاف البلاستيكي الخارجي لهذا الكيبل بطول ١ سم تقريباً ثم رفع الشبكة السلكية التي تحيط بالقلب الداخلي للسلك، ثم باستعمال أداة القشط يتم رفع الغلاف البلاستيكي الداخلي الذي يحيط بالسلك النحاسي الداخلي ومن ثم نقوم بجلب المقبس BNC وتثبيت القلب الداخلي لها وربطها بالسلك النحاسي الداخلي للكيبل، أما القشرة الخارجية للمقبس فأنها تربط بالشبكة السلكية للكيبل المحوري واحرص عزيزي الطالب عدم اتصال القلب الداخلي للمقبس BNC مع قشرته الخارجية، وفي أدناه أهم أشكال مقابس BNC التي من الممكن استخدامها لأنواع الموصلات المحورية (الرفيعة والسميكة).



شكل (٢ - ١٣) يوضح أنواع مقابس BNC المستخدمة في تفييش الموصلات المحورية بأنواعها

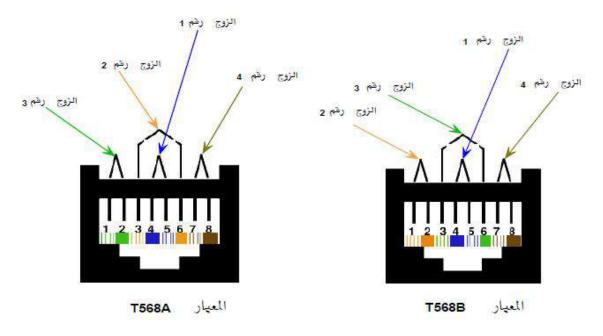
كما و لابد الإشارة عزيزي الطالب إلى أن لمقبس BNC أشكال عديدة تسمى عائلة مقبس BNC وهي تتكون من المكونات التالية:

- BNC cable connector ()
 - BNC T connector (7
- BNC barrel connector (7
 - BNC terminator (5

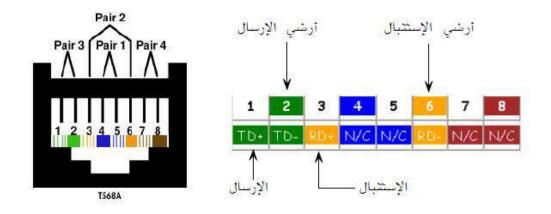
والشكل التالي يوضح الأنواع المختلفة من عائلة المشبك BNC.

BNC شكل (۲ – ۱٤) يوضح أنواع وصلات الربط من عائلة

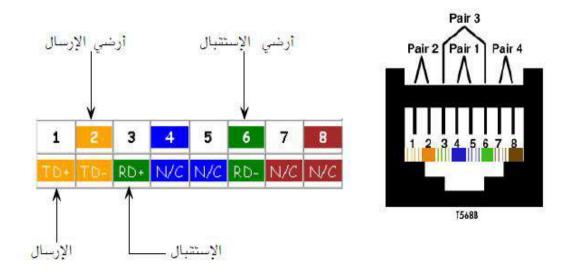
أما وصلات الربط الخاصة بهذه الأسلاك فأنها تعرف بوصلات الربط 45-RJ، ويمكن تعريفها علمياً بأنها هي المقابس (المشابك) المستخدمة في ربط نوعي الموصلات STP و UTP، حيث تحتوي هذه الوصلات على ثمانية مسارات لكل سلك من الأسلاك الثمانية وفي نهاية هذه المسارات توجد رؤوس نحاسية اللون تعمل كموصلات للأسلاك.



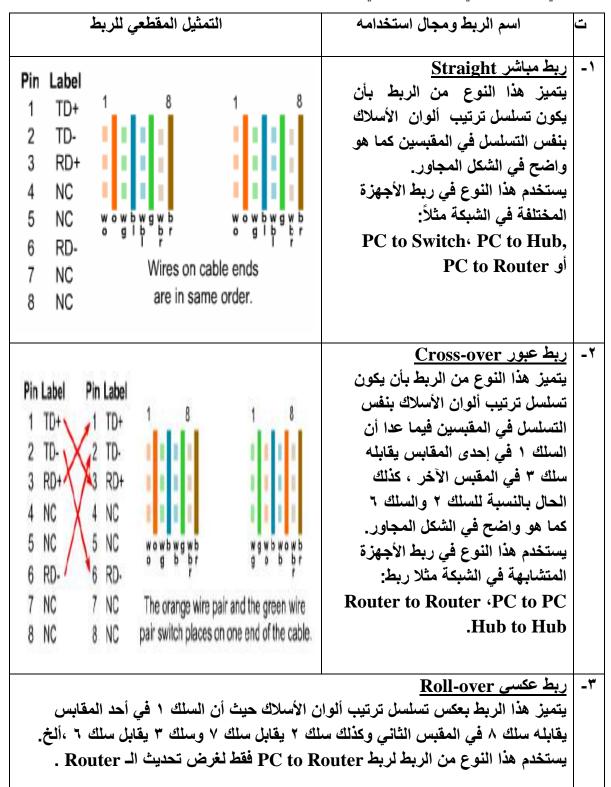
شكل (1 – 1) يوضح مقاطع مختلفة للمقبس 45- 1 الخاص بالربط الشبكي


و لإجراء عملية التفيش لهذا النوع من الموصلات عملياً، فأن ترتيب الأسلاك المجدولة فيها يجب أن يرتب وفق معيارين للتوصيل وهما:

- T568A •
- T568B •


حيث نلاحظ أن في كلا المعيارين تحتفظ الأزواج الزرقاء والبنية بأماكنها في حين أن الأزواج البرتقالية والخضراء تتبدل أماكنها، المعياران متكافئان في العمل لكن من المهم اختيار أحد الأسلوبين واستخدامه في جميع عمليات التوصيل، أو تتم عملية ترتيب الأسلاك المجدولة وفق تسلسل الوانها وحسب نوع السلك المجدول، ويبين الشكل التالي معايير ربط الأسلاك المجدولة.

شكل (٢-٢) يمثل معياري ربط المقابس RJ45 في الموصلات المجدولة


شكل (٢-٢) يمثل الأسلاك الخاصة بالإرسال والاستقبال في معياري ربط RJ45 في الموصلات المجدولة

شكل (١٨-١) يمثل معياري ربط RJ45 في الموصلات المجدولة

عيار T568B	الم	المعيار T568A		
رقم السلك	اللون	اللون	رقم السلك	
1	أبيض - برتقالي	أبيض ـ أخضر	1	
2	برتقالي	أخضر 🕠	2	
3	أبيض - أخضر	أبيض - برتقالي	3	
4	أزرق 💶	أزرق	4	
5	أبيض - أزرق	أبيض - أزرق	5	
6	أخضر 🌘	برتقالي	6	
7	أبيض - بني	أبيض - بني	7	
8	بني	بني	8	

ولابد الإشارة عزيزي الطالب أن هناك ثلاثة أنواع لربط الموصلات المزدوجة المجدولة اعتمادا على موقع استخدامها في الربط الشبكي كما هو مبين في أدناه:

رقم التمرين: (٢ – ٢) الزمن المخصص: 3 ساعات

اسم التمرين: تركيب مقبس BNC في موصل محوري

مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يكون الطالب قادراً على تركيب فيشة BNC في موصل محوري

ثانيا: التسهيلات التعليمية:

١ _أداة قطع الموصل ٢ _ أداة قشط الموصل

۳- أداة كبس مقبس BNC ٤ - موصل محوري، مقبس BNC

ثالثًا: خطوات العمل، الرسومات

1 ارتد بدلة العمل الملائمة لجسمك

حدد الطول المطلوب للسلك ثم اقطع طرف السلك ثم اقشط السلك باستخدام أداة القشط بطول ١٥ ملم للغلاف الخارجي و ٨ ملم للطبقة الثانية و ٥ ملم من الطبقة الداخلية.

	الإبرة الوسطى للوصلة.	3
or o	اكبس المقبس BNC باستخدام أداة الكبس، اضغط على الإبرة الوسطى حتى تمسك السلك.	4
	بعد الانتهاء من عملية التفييش احرص عزيزي الطالب على أن يكون الشكل المجاور هو الشكل النهائي للسلك المحوري بعد إجراء عملية التفييش.	5
وصل محوري وربطه بمقبس BNC. مكن أن تواجهها في أثناء عملية التفييش.	مناقشة: ماهي الغاية من عملية التفييش؟ إذكر المراحل الرئيسة لعملية تفييش مو ماهي الأخطاء والعوارض التي من المع	<u>al</u>

	<u> </u>						
	استمارة قائمة الفحص						
الجهة	الفاحصة:						
اسم الد	م الطالب:						
التخصم	ص:						
اسم الت	نمرين:						
الرقم	الخطوات	الدرجة القياسية	درجة الأداء	الملاحظات			
١	ارتداء بدلة العمل	%°					
۲	مراحل قشط الغلاف الخارجي وإخراج رأس السلك النحاسي	%10					
٣	مراحل تركيب وتثبيت المقبس BNC في الموصل المحوري مع الفحص	%10					
٤	المناقشة	%1.					
٥	الزمن المخصص	%°					
المجموع							
اسم الق	فاحص	التوقيع					
التاريخ							

رقم التمرين: (٣-٢) الزمن المخصص: ٣ ساعات

اسم التمرين: توصيل جهاز حاسوب باستخدام الموصل المحوري

مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يكون الطالب قادراً على التعرف استخدام الوصلة T والموصل المحوري

ثانيا: التسهيلات التعليمية:

۱ -كيبل محوري ۲- وصله نوع T للسلك المحوري

ثالثًا: خطوات العمل، الرسومات

	1 ارتد بدلة العمل الملائمة لجسمك
	2 صل السلكين مع الوصلة T في الطرفين الأيسر والأيمن.
	3 صل الطرف الأسفل للوصلة T مع بطاقة الشبكة في جهاز الحاسوب.
الوصلة T؟	4 المناقشة : • ماهو الغرض الرئيس من إستخدام
ن الممكن أن تحدث في أثناء ربط الوصلة T.	• ناقش أهم العوارض الفنية التي مر

استمارة قائمة الفحص	
ة الفاحصة:	الجهة
المرحلة:	اسم ال
سص :	التخص
التمرين:	اسىم ال

الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم	
		%°	ارتداء بدلة العمل	1	
		%10	مراحل التعرف على وصل عائلة BNC والوصلة T	۲	
		%10	مراحل تركيب وتثبيت الفيشة BNC في الوصلة من النوع T	٣	
		%1.	المناقشة	٤	
		%°	الزمن المخصص	٥	
			المجموع		
		التوقيع	اسم الفاحص التاريخ		
				ر سار چر	

رقم التمرين: (٢ – ٤) الزمن المخصص: ٣ ساعات

اسم التمرين: توصيل مقبس RJ45 في طرف الموصل المجدول UTP (دون اعتماد نوع الربط)

مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يكون الطالب قادراً على توصيل مقبس RJ45 في طرف السلك المجدول

ثانيا: التسهيلات التعليمية:

ا _سلك مجدول ٢_ مقبس RJ45 ٣_ أداة قشط الموصل

٤ - أداة قطع الموصل ٥ - أداة كبس مقبس RJ45

ثالثًا: خطوات العمل، الرسومات

ارتد بدلة العمل الملائمة لجسمك	1
الموصل	2
اقشط الموصل باستخدام اداة القشط	3
رتب الأسلاك الداخلية للموصل حسب الترتيب المناسب.	4

ادخل الأسلاك في المقبس RJ45، وتأكد من إدخال كل سلك في المسار الصحيح.	
تأكد من ان جميع الأسلاك وصلت إلى الدبابيس النحاسية الموجودة في اعلى المقبس.	
اكبس المقبس RJ45 باستخدام أداة الكبس	
اضغط على اداة الكبس باستخدام اليد	
الشكل النهائي للموصل بعد الإنتهاء من عملية التفييش	9
المناقشة: ماهو المقصود بعملية التفييش؟ أذكر أهم إستخدام للمقبس RJ45 ماهي أهم العوارض التي واجهتها	10

	استمارة قائمة القحص					
	جهة الفاحصة:					
	م الطالب:					
			ص :	التخص		
			تمرین:	اسم الن		
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم		
		%°	ارتداء بدلة العمل	١		
		%10	مراحل قشط الغلاف الخارجي واخراج واعداد الاسلاك الثمانية	۲		
		%10	مراحل تركيب وتثبيت المقبس RJ45 في الموصل المجدول وكبسها مع الفحص	٣		
		%۱.	المناقشة	ŧ		
	الزمن المخصص ٥%					
المجموع						
		التوقيع	فاحص	اسم الذ		

رقم التمرين: (٢ - ٥) الزمن المخصص: ٣ ساعات

اسم التمرين: التدريب على إنشاء موصل مزدوج مجدول (UTP) من النوع المباشر (Straight)

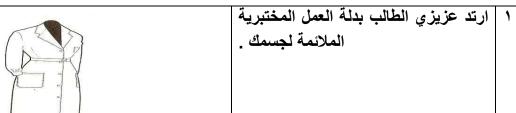
مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يكون الطالب قادراً إنشاء سلك مزدوج مجدول من النوع المباشر.

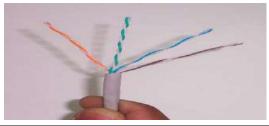
ثانيا: التسهيلات التعليمية:

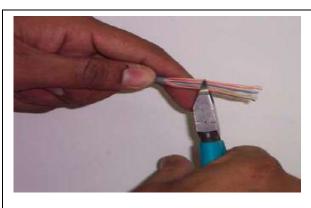
۱ _ موصل مزدوج مجدول UTP ذو طول مناسب خال من المقابس


7 ـ مقبس RJ-45

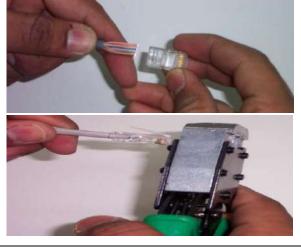
٣- أداة قشط السلك وكبس المقبس RJ-45

٤ ـ جهاز فحص السلك الشبكي


٥ ـ دفتر ملاحظات


ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات

خذ موصلاً مزدوجاً مجدولاً ذا طول مناسب لا يتجاوز طوله في أقصى الحالات ١٠٠ م وذلك للمحافظة على المواصفات الفنية للربط الشبكي، ثم قم بعد ذلك بقشط الطرفين لرفع الغلاف البلاستيكي الخارجي عن الأسلاك المزدوجة الخارجية، ويفضل عزيزي الطالب أن يكون طول القطعة المقشوطة لا تزيد عن ٥ سم.



قص الأسلاك المجدولة بطول مناسب لا يتعدى تقريباً ١,٣ سم لغرض تثبيتها في المقبس 1,٣ المقبض أن تكون طول المقبس الأسلاك بعد القص بقدر طول المقبس 1,45 ويكون الغلاف الخارجي البلاستيكي لهذه الأسلاك داخل قليلاً داخل المقبس بشكل يسمح له الكبس مع المقبس.

قم بترتيب الأسلاك المزدوجة المجدولة بشكل المعيار وتسلسل ألوان الأسلاك الخاص بالربط المباشر Straight كما هو واضح في الشكل المجاور.

ه ضع الأسلاك حسب التسلسل أعلاه ضمن المقبس 45-RJ، ثم قم بكبسها من خلال الأداة الخاصة بذلك، كما هو واضح في الشكل المجاور.

اختبر عزيزي الطالب هذا السلك بواسطة جهاز اختبار نوع ربط السلك الشبكي الواضح في الشكل المجاور.

- المناقشة:
- ١ ماهى استخدامات هذا النوع من الربط؟
- ٢ ناقش الحالة التي يكون فيها السلكان ٤ و ٥ غير موصلين بصورة صحيحة.

مارة قائمة الفحص	است
	الجهة الفاحصة:
المرحلة:	اسم الطالب:
	التخصص:
	اسم التمرين :

الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم
		%°	ارتداء بدلة العمل	1
		%10	تحديد طول الموصل وقشط الأطراف وقص الأسلاك المزدوجة بطول مناسب.	۲
		%10	ترتيب ألوان الأسلاك المزدوجة حسب معيار نوع الربط المباشر.	٣
		%۱۰	المناقشة	٤
		%°	الزمن المخصص	0
المجموع				
		التوقيع	اسم القاحص	
التاريخ				

رقم التمرين: (٢ – ٦)

اسم التمرين: التدريب على إنشاء موصل مزدوج مجدول (UTP) من نوع العبور Cross-over

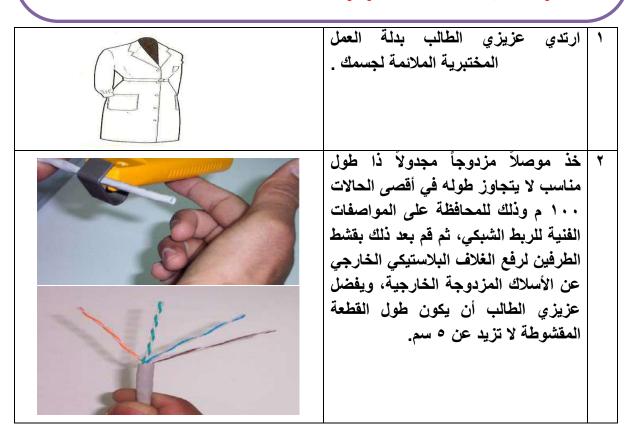
مكان التنفيذ: مختبر شبكات الحاسوب

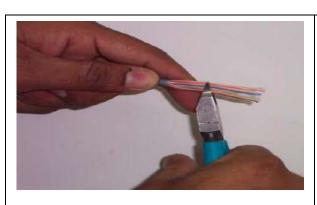
أولا: الأهداف التعليمية:

إن يكون الطالب قادراً إنشاء موصل مزدوج مجدول من نوع العبور

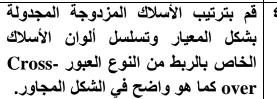
ثانيا: التسهيلات التعليمية:

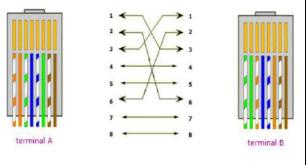
۱ _ موصل مزدوج مجدول UTP ذو طول مناسب خال من المقابس

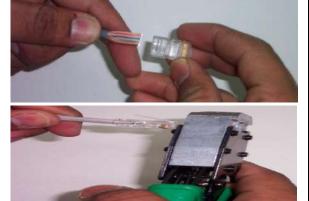

۲_ مقبس 45-RJ


٣- أداة قشط السلك وكبس المقبس RJ-45

٤ ـ جهاز فحص السلك الشبكي


٥ ـ دفتر ملاحظات


ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات



قص الأسلاك المجدولة بطول مناسب لا يتعدى تقريباً ١,٣ سم لغرض تثبيتها في المقبس RJ-45 ، أي يجب أن تكون طول الأسلاك بعد القص بقدر طول المقبس RJ-45 ويكون الغلاف الخارجي البلاستيكي لهذه الأسلاك داخلاً قليلاً داخل المقبس بشكل يسمح له الكبس مع المقبس.

م ضع الأسلاك حسب التسلسل أعلاه ضمن المقبس 45-RJ، ثم قم بكبسها من خلال الأداة الخاصة بذلك، كما هو واضح في الشكل المجاور.

اختبر عزيزي الطالب هذا السلك بواسطة جهاز اختبار نوع ربط السلك الشبكي الواضح في الشكل المجاور.

المناقشة:

- ١ ماهي استخدامات هذا النوع من الربط؟
- ٢ -ما هي أوجه الإختلاف بين السلك المزدوج من نوع العبور والنوع المباشر؟

	استمارة قائمة الفحم	U				
الجهة الفاحصة:						
اسم ال	سم الطالب:					
التخص	ص:					
اسم الا	تمرین:					
الرقم	الخطوات	الدرجة القياسية	درجة الأداء	الملاحظات		
١	ارتداء بدلة العمل	%°				
۲	تحديد طول السلك وقشط الأطراف وقص الأسلاك المزدوجة بطول مناسب	%1 <i>0</i>				
٣	ترتيب ألوان الأسلاك المزدوجة حسب المعيار نوع ربط العبور Cross-over	%10				
٤	المناقشة	%۱۰				
٥	الزمن المخصص					
المجمو	المجموع					
است ال	فاحص	التو قدع				

التاريخ

رقم التمرين: (٢ – ٧)

اسم التمرين: التدريب على إنشاء موصل مزدوج مجدول (UTP) من النوع العكسي Roll-over

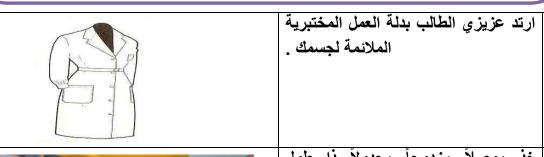
مكان التنفيذ: مختبر شبكات الحاسوب

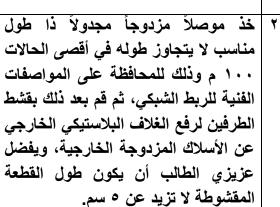
أولا: الأهداف التعليمية:

إن يكون الطالب قادراً إنشاء موصل مزدوج مجدول من النوع العكسي.

ثانيا: التسهيلات التعليمية:

۱ _ موصل مزدوج مجدول UTP ذو طول مناسب خال من المقابس


RJ-45 مقبس


٣- أداة قشط السلك وكبس المقبس RJ-45

٤ - جهاز فحص السلك الشبكي.

٥ ـ دفتر ملاحظات.

ثالثا: خطوات العمل، النقاط الحاكمة، الرسومات

قص الأسلاك المجدولة بطول مناسب لا يتعدى تقريباً ١,٣ سم لغرض تثبيتها في المقبس 45-RJ ، أي يجب أن تكون طول الأسلاك بعد القص بقدر طول المقبس RJ-45 ويكون الغلاف الخارجي البلاستيكي لهذه الأسلاك داخلاً قليلاً داخل المقبس بشكل يسمح له الكبس مع المقبس.

غ قم بترتيب الأسلاك المزدوجة المجدولة بشكل المعيار وتسلسل ألوان الأسلاك الخاص بالربط من النوع العكسي Roll-over كما هو واضح في الشكل أدناه، لاحظ عزيزي الطالب أن أي لون سلك مسبوق بحرف W يعنى سلك أبيض مخطط بهذا اللون.

Roll-Over UTP Cable

Side1: WO O WG B WB G WBr Br Side2: Br WBr G WB B WG O WO

صع الأسلاك حسب التسلسل أعلاه ضمن المقبس 45-RJ ، ثم قم بكبسها من خلال الأداة الخاصة بذلك ، كما هو واضح في الشكل المجاور.

اختبر عزیزی الطالب هذا السلك بواسطة
 جهاز اختبار نوع ربط السلك الشبكی
 الواضح فی الشكل المجاور.

٧ المناقشة:

- ١ ماهى استخدامات هذا النوع من الربط؟
- ٢ ما هي أوجه الإختلاف بين السلك المزدوج من النوع العكسى ونوع العبور؟

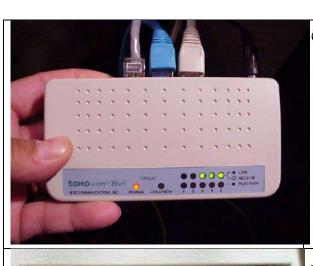
استمارة قائمة الفحص				
هة الفاحصة:				
م الطالب:		المرحا	نة:	
<u>:</u>				
م التمرين:				
فو الحطوات	الخطوات		درجة الأداء	الملاحظات
ارتداء بدلة العمل	العمل	%°		
تحديد طول الموصل وقشط الأطراف وقص ١٥% الأسلاك المزدوجة بطول مناسب		%10		
ترتيب ألوان الأسلاك المزدوجة حسب معيار نوع ١٥% ربط العكسي Roll-over		%10		
المناقشة ١٠%		%1.		
الزمن المخصص ٥%	صص	%°		
جموع				
م الفاحص	اسم الفاحص			
ريخ				

الزمن المخصص: ٣ ساعات

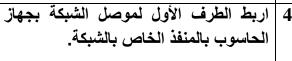
رقم التمرين: (7 - 4) الزم التمرين: (7 - 4) اسم التمرين: (7 - 4) المركزي

مكان التنفيذ: ورشة صيانة الحاسوب

أولا: الأهداف التعليمية:


إن يكون الطالب قادراً على توصيل اجهزة الحاسوب بالمجمع المركزي

ثانيا: التسهيلات التعليمية:


١ - جهاز حاسوب، ٢ - مجمع مركزي، ٣ - اسلاك مجدولة،

ثالثا: خطوات العمل، الرسومات

3 شاهد الإشارات الضوئية في واجهة المجمع المركزي للتأكد من عمله.

5 اربط الطرف الآخر لموصل الشبكة بالمنفذ المناسب في المجمع.

- المناقشة:
- ماهي الغاية الأساسية من إستخدام المجمع؟
- ناقش زيادة المنافذ الخاصة بالربط الشبكي من خلال ربط المجمع بمجمع آخر؟

استمارة قائمة الفحص							
			الفاحصة:	الجهة			
الطالب:							
صص:							
			تمرین:	اسم الذ			
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم			
		%0	ارتداء بدلة العمل	1			
		%10	مراحل إعداد وتهيئة أجهزة الحواسيب والمجمع	۲			

١	ارتداء بدلة العمل	%°					
۲	مراحل إعداد وتهيئة أجهزة الحواسيب والمجمع	%10					
	المركزي والأسلاك المخصصة						
٣	مراحل ربط المجمع المركزي بأجهزة الحواسيب	%10					
	وإجراء عملية التشغيل						
٤	المناقشة	%١٠					
٥	الزمن المخصص	%0					
المجموع							
اسم ال	فاحص	التوقيع					
التاريخ	التاريخ						

اسئلة الفصل الثاني

- س ١: ماهي المكونات الرئيسة لشبكات الحاسوب؟
- س٢: ماهي المكونات المادية لشبكات الحاسوب؟ عددها واشرح واحدة منها بالتفصيل.
 - س٣: ما المقصود بمحطات العمل Workstations في شبكات الحاسوب؟
 - س ؛: ما المقصود بالخوادم Servers ؟ وماهي الفوائد المتحققة من عملها؟
- س٥: ما المقصود بالمكونات البرمجية لشبكات الحاسوب؟ عددها واشرح واحدة منها؟
 - س٦: ماهى أهم أنواع بطاقات الشبكة؟ عددها مع ذكر أهم مواصفاتها الفنية.
 - س٧: ماهي وظيفة بطاقة الشبكة؟
 - س٨: ماهي أهم الأنواع الرئيسة لأجهزة الربط الشبكي؟ عددها واشرح واحدة منها.
- س ٩: ماهي أهم الفروقات الأساسية بين الموجهات Routers والمبادلات Switches?
- س ١٠: ماهي أهم الخصائص التي تمتاز بها أنظمة التشغيل المستعملة في شبكات الحاسوب؟
 - س ١١: عدد أهم أنواع وسائط الاتصال والربط الشبكي؟
 - س١٢: ماهي أهم أنواع وسائط الاتصال السلكية؟ عددها واشرح واحدة منها؟
 - س١٣: ماهي أهم الفروقات بين الموصلات المحورية والموصلات المجدولة؟
- س ٤١: ماهي الفروقات بين الموصلات المجدولة غير المعزولة UTP والنوع المعزول STP؟
 - س ١٠ : ماهي الفروقات بين الموصلات المجدولة بنوعيها وبين موصلات الألياف الضوئية؟
- س١٦: ماهي الفائدة الفنية من عملية الجدل الحاصلة لزوج الأسلاك الداخلية في الموصلات المجدولة؟
- س١٧: ماهي أنواع الربط المستعملة لمقابس الموصلات المجدولة؟ اذكرها مع بيان حالة الربط الفني لكل منها (مجال استخدامها)؟
 - س١٨: ماهي أنواع وسائط الاتصال اللاسلكية؟ عددها واشرح واحدة منها؟
 - س ١٩: أيهما أفضل فنياً وعملياً وسائط الاتصال السلكية أم اللاسلكية؟ ولماذا؟
- س ٢٠: أيهما أفضل في ربط أكثر عدد من شبكات الحاسوب وسائط الاتصال السلكية أم اللاسلكية؟ اذكر سبب ذلك؟

الفصل الثالث أنواع شبكات الحاسوب

أهداف الفصل الثالث

يهدف هذا الفصل إلى تعريف الطالب على الأنواع المختلفة لشبكات الحاسوب وما يميز كل نوع منها كما ويتطرق هذا الفصل إلى التعريف على نوعين أساسيين من أنواع الشبكات المحلية وهما شبكة الند للند وشبكة الزبون الخادم وكيفية البناء والاستفادة من كلتا الشبكتين في حياتنا اليومية.

محتويات الفصل الثالث

(۲-۳) شبكات الند للند

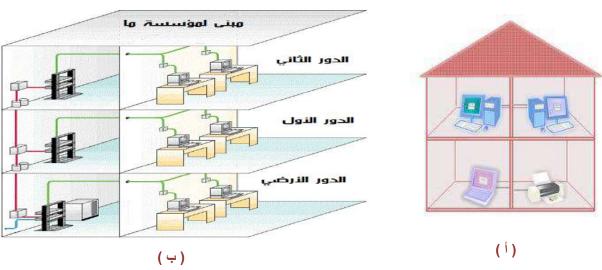
(٣-٣) شبكات الزبون/الخادم

(٣-٤) الشبكات المختلطة

الفصل الثالث أنواع شبكات الحاسوب

(٣ - ١) مقدمة في أنواع الشبكات

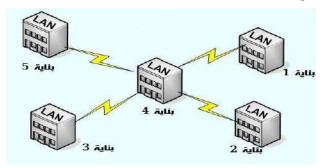
قد تبدأ الشبكات في الهيئات والمؤسسات والمكتبات صغيرة ثم تنمو وتكبر وفقا لحاجة هذه الفئات، حيث تتغير مواصفات هذه الشبكات ومسمياتها. تتفاوت أنواع الشبكات وققا لمؤشرين رئيسين :الأول يتعلق بحجم الشبكة ومدى اتساعها، والثاني يتعلق بمكونات الشبكة وبنيتها ونظم تشغيلها.


نستعرض فيما يلي الأنواع المختلفة لهذه الشبكات وقّقا لحجمها ومدى اتساعها تتنوع شبكات الحواسيب من جوانب مختلفة سواء من ناحية أسلوب ربط المكونات مع بعضها البعض أو التغطية الجغرافية أو الوسائط المستعملة أو تطبيقاتها و استخدامها.

يمكن تقسيم شبكات الحواسيب من حيث التغطية الجغرافية إلى أربعة أنواع: الشبكات المحلية، الشبكات الواسعة، وشبكة الأنترنت.

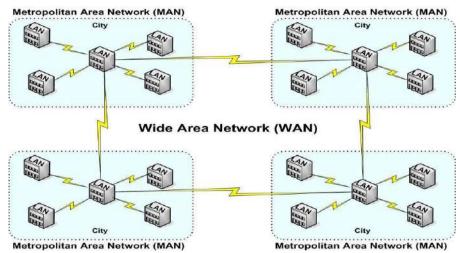
(Local Area Networks- LAN) شبكات الحواسيب المحلية (١-١-٣)

وهو اتصال مجموعة من الحواسيب بحاسوب رئيسي في أماكن متقاربة جغرافياً قد تكون غرفة أو مبنى واحد أو عدة مبانٍ متقاربة، حيث يتم هذا الاتصال عن طريق وصلات سلكية مباشرة أو لاسلكي. وتستخدم هذه الشبكات في الشركات الصغيرة، المدارس والجامعات، المنازل وغيرها.


تتميز شبكة الحواسيب المحلية بسرعتها الفائقة لنقل البيانات التي تتراوح بين (١٠ إلى ١٠٠ أو ١٠٠٠) في الثانية للشبكات العالية السرعة حسب الوسط الناقل و التقنيات المستعملة (كوابل محورية، أسلاك مبرومة أو ألياف ضوئية).

شكل (٣-١) شبكة حواسيب محلية (LAN) (أ) منزلية (ب) مبنى مؤسسة

(Metropolitan Area Networks- MAN) شبكات الحواسيب الإقليمية (٢-١-٣)


تستخدم الشبكات الإقليمية في مساحات جغرافية متوسطة نسبيا تصل إلى عدة كيلومترات و تستعمل في ربط حاسبات موجودة في نفس المدينة أو مجموعة قريبة من المدن.

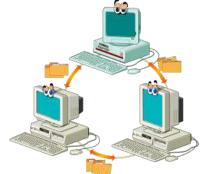
شكل (٣-٢) شبكة حواسيب إقليمية (MAN)

(Wide Area Networks-WAN) شبكات الحواسيب الواسعة (٣-١-٣)

تشمل الشبكات الواسعة كل أنواع الشبكات المستخدمة في نقل البيانات و المعلومات من أماكن بعيدة و في مساحة جغرافية واسعة (من عدة كيلومترات إلى آلاف الكيلومترات). و تستخدم فيها كل أساليب الاتصال السابق ذكرها. و تحتوي الشبكة الواسعة على عدد كبير جدا من الطرفيات و الحواسيب. سرعة الشبكات الواسعة قليلة مقارنة بالشبكات المحلية حيث أنها غالبا ما تعتمد على شبكة الهاتف و مجموعة كبيرة من أجهزة ملحقة من أهمها المودم (Modem) ذو السرعة المنخفضة التي تقاس بالكيلوبت في الثانية (Kbps) بينما تقاس سرعة الشبكات المحلية بالميجابت في الثانية (Mbps).

شكل (٣-٣) شبكة حواسيب واسعة (WAN)

(Internet) شبكة الأنترنت (۱-۱-۶)

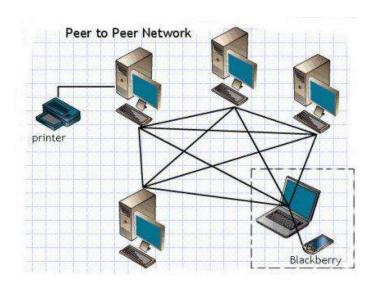


شبكة الشبكات صممت هذه الشبكة أساسا لأغراض عسكرية بحته أيام الحرب الباردة وظهرت في ذلك الوقت شبكة Arpanet ونمت هذه الشبكة وأصبحت نظام متكامل وبعد ذلك وفي عام ١٩٩٠ تخلت الحكومة الأمريكية عن الشبكة وأعطي حق الإدارة إلى مؤسسة العلوم الوطنية NSF وفي عام ١٩٩١ تخلت المؤسسة عن الشبكة لصالح الشركات التجارية وبذلك فتح الباب أمام أضخم عمل وبناء صممه الإنسان حيث توسعت وانتشرت وضمت في داخلها كل أنواع الشبكات LAN / MAN / WAN وهي سائرة في طريق التطوير ولا يمكن لاحد ان يتنبأ كيف ستكون هذه الشبكة مستقبلاً.

سوف يكون التركيز خلال هذا الفصل على الشبكات المحلية (LANs) أنواعها، طرق ربطها، فوائدها وخصائص كل نوع منها وذلك لكثرة استخدام هذا النوع من الشبكات سواء في المنازل أو في الشركات. يمكن تصنيف الشبكات المحلية إلى نوعين أساسيين هما:

۱ - شبكات الند للند. (Peer-to-Peer Networks)

۲ - شبكات الزبون/الخادم. (Client / Server Networks)



(Peer-to-Peer Networks) شبكات الند للند (۲ – ۳)

المقصود بشبكات الند للند أن الحواسيب في الشبكة يستطيع كل منها تأدية وظائف الزبون و المزود في نفس الوقت، بالتالي فإن الجهاز على الشبكة يستطيع تزويد غيره بالمعلومات وفي نفس الوقت يطلب المعلومات من غيره من الأجهزة المتصلة بالشبكة كما موضح بالشكل (٢-٤).

إذاً تعريف شبكات الند للند: هي شبكة حواسيب محلية (LAN) مكونة من مجموعة من الأجهزة لها حقوق متساوية ولا تحتوي على مزود مخصص بل كل جهاز في الشبكة ممكن أن يكون مزودا أو زبونا، وهذا النوع من الشبكات يطلق عليه أيضا اسم مجموعة عمل (Workgroup).

يمكن فهم مجموعة العمل بأنها مجموعة من الأجهزة التي تتعاون فيما بينها لإنجاز عمل معين. وهي عادة تتكون من عدد قليل من الأجهزة لا يتجاوز العشرة. يستطيع أعضاء مجموعة العمل رؤية البيانات والموارد المخزنة على أي من الأجهزة المتصلة بالشبكة و الإفادة منها.

شكل (٣-٤) شبكة الند للند

تعتبر شبكات الند للند مناسبة لاحتياجات الشبكات الصغيرة والتي ينجز أفرادها مهام متشابهة، ونشاهد هذا النوع من الشبكات في مكاتب التدريب على استخدام الحاسوب مثلا.

يعتبر هذا النوع من الشبكات مناسبا في الحالات التالية:

- ١- أن يكون عدد الأجهزة في الشبكة لا يتجاوز العشرة.
- ٢- أن يكون المستخدمون المفترضون لهذه الشبكة موجودون في نفس المكان العام الذي توجد فيه هذه الشبكة.
 - ٣- أن لا يكون أمن الشبكة من الأمور ذات الأهمية البالغة لديك.
- ٤- أن لا يكون في نية المؤسسة التي تريد إنشاء هذه الشبكة خطط لتنمية الشبكة وتطويرها في المستقبل القربب.

(٣-٢-١) مميزات شبكة الند للند و عيوبها

أن من أهم مميزات شبكة الند للند هي:

- ١ -تكون تكلفة إنجاز ها محدودة.
- ٢- هذه الشبكات لا تحتاج إلى برامج إضافية على نظام التشغيل.
- ٣- لا تحتاج إلى أجهزة قوية، لأن مهام إدارة موارد الشبكة موزعة على أجهزة الشبكة و ليست موكلة إلى
 جهاز مزود بعينه.
- ٤- تثبیت الشبکة وإعدادها في غایة السهولة، فكل ما تحتاجه هو نظام تشبیك بسیط من أسلاك موصلة إلى بطاقات الشبکة في كل جهاز حاسوب من أجهزة الشبكة.

أما العيب الرئيس لهذا النوع من الشبكات هو أنها غير مناسبة للشبكات الكبيرة وذلك لأنه مع نمو الشبكة وزيادة عدد المستخدمين تظهر المشاكل التالية:

١- تصبح الإدارة اللامركزية للشبكة سببا في هدر الوقت و الجهد وفقدان تفاعلها.

٢- يصبح الحفاظ على أمن الشبكة أمرا في غاية الصعوبة.

٣- مع زيادة عدد الأجهزة يصبح إيجاد البيانات والإفادة من موارد الشبكة أمرا مزعجا لكل مستخدمي الشبكة.

(٣-٢-٢) أنظمة تشغيل مايكروسوفت المتوافقة مع شبكات الند للند

نظام تشغيل الشبكات هو البرنامج الذي يدير و يتحكم بنشاطات الأجهزة و المستخدمين على الشبكة. وكما ذكرنا سابقا فإن إدارة الشبكة على نوعين: مركزية و موزعة.

في حالة الإدارة المركزية، فإن الشبكة تكون مدارة بواسطة نظام تشغيل شبكات مركزي. أما في حالة الإدارة الموزعة، فإن كل مستخدم مسؤول عن إدارة جهازه وتحديد البيانات والموارد التي يريد مشاركتها مع الآخرين وتحديد فيما إذا كانت هذه الموارد متاحة للقراءة فقط أم للقراءة والكتابة معا، والبرنامج الذي يسمح لهم بذلك هو نظام التشغيل المحلي الموجود على أجهزتهم. وكما هو واضح فإن شبكات الند للند تنتمي لشبكات الإدارة الموزعة.

أن اغلب أن لم تكن جميع أنظمة التشغيل التي أصدرتها مايكروسوفت تدعم شبكات الند للند واهمها ، Windows 2000 ، Windows NT ، Windows Me ، Windows 98 ، Windows 95) . (Windows 7 ، Windows Vista ، Windows XP)

رقم التمرين: (٣ – ١) الزمن المخصص: ٣ ساعات

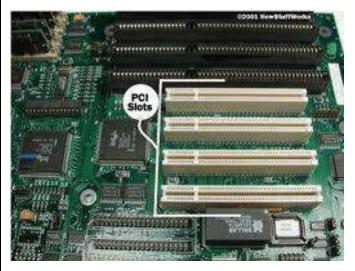
اسم التمرين: التدريب على إعداد شبكة الند للند.

مكان التنفيذ: مختبر شبكات الحاسوب.

أولا: الأهداف التعليمية:

إن يكون الطالب قادراً إنشاء شبكة محلية منزلية بين جهازى حاسوب.

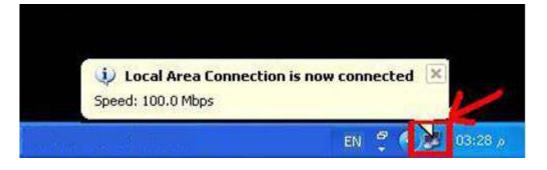
ثانيا: التسهيلات التعليمية:

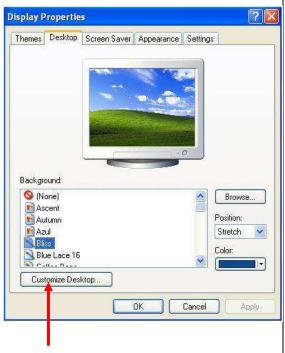

- ۱ ـ موصل مزدوج مجدول UTP من نوع العبور Cross- over ذو مقبسين UTP دو مقبسين RJ-45.
 - 2- وصلة ربط شبكي نوع LAN Card) PCI (عدد ٢).
 - ۳- جهاز حاسوب منصب عليه نظام تشغيل (Windows XP) (عدد ۲).
 - ٤ ـ دفتر ملاحظات.

ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات

ارتد بدلة العمل المناسبة لجسمك القصل السابق. RJ-45 Plug Pin 1 (Clip is pointed away from you. T-568B)

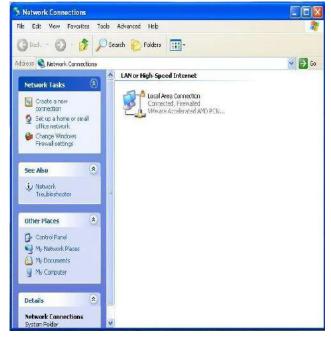
قم بإحضار بطاقة الربط الشبكي نوع PCI وضعه في الفتحة المخصصة له وتثبيته في اللوحة الأم في جهاز الحاسوب بعد فتح علبة النظام، بعد الانتهاء من تثبيت الوصلة، اغلق علبة النظام لجهاز الحاسوب وضعها في المكان المخصص لها، كرر عزيزي الطالب هذه العملية بتثبيت وصلة ربط شبكة وتثبيتها في جهاز الحاسوب الآخر. وبعد الانتهاء من تركيب الوصلتين في الجهازين، ادخل سلك التوصيل الشبكي من نوع العبور المعد مسبقاً في فتحة الربط الشبكي الموجودة على كل حاسوب.

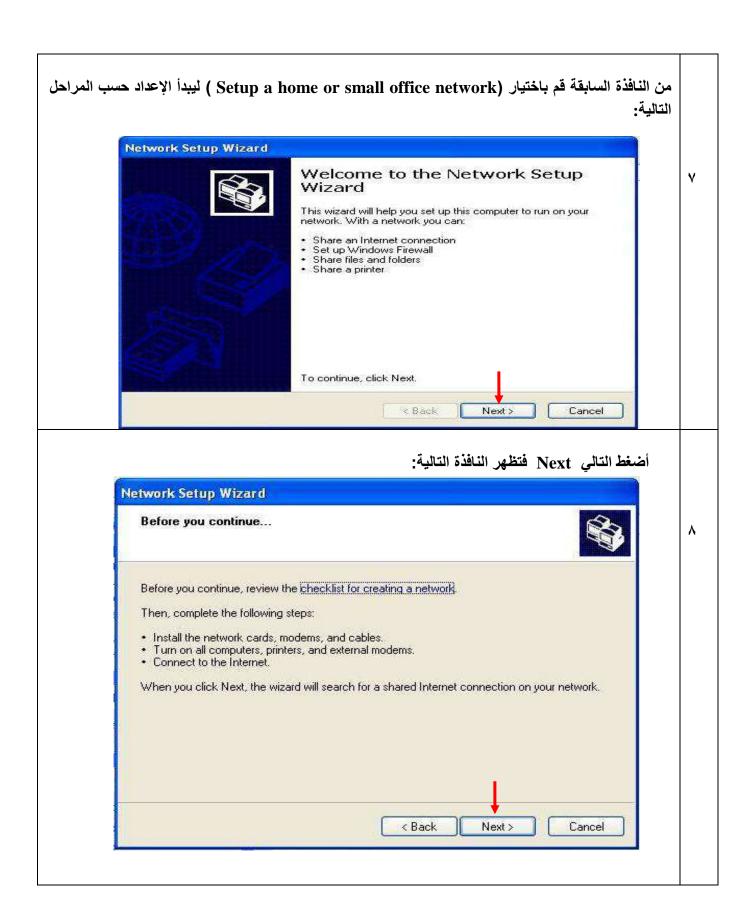


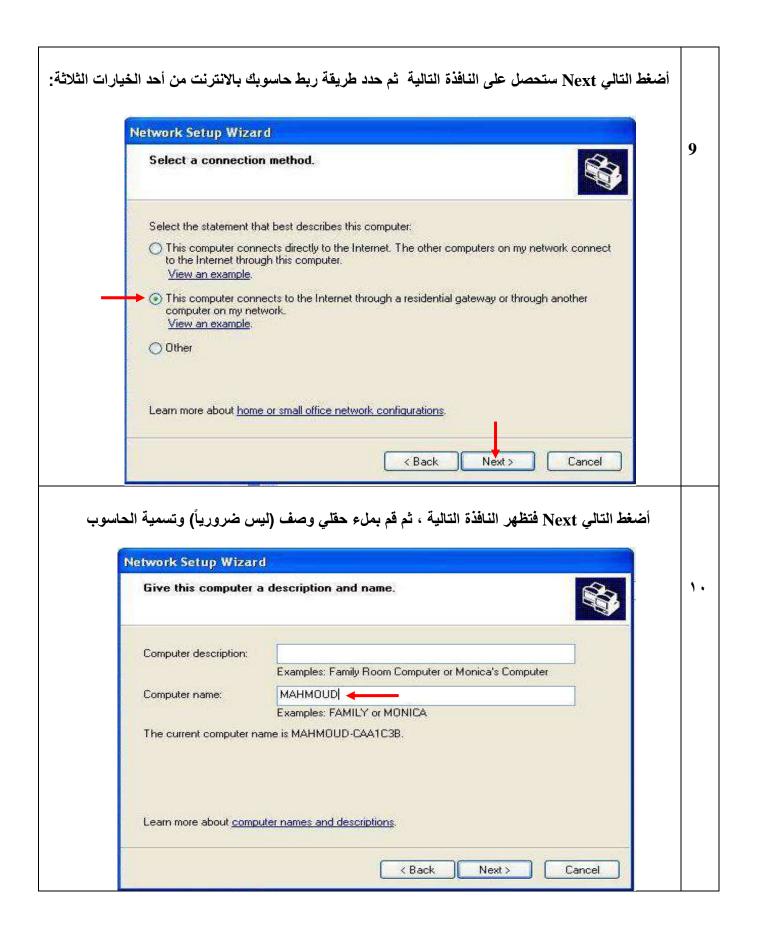

بعد تشغيل الجهازين ستظهر لك هذه الأيقونة بجانب الساعة تشير أن الاتصال تم بنجاح.

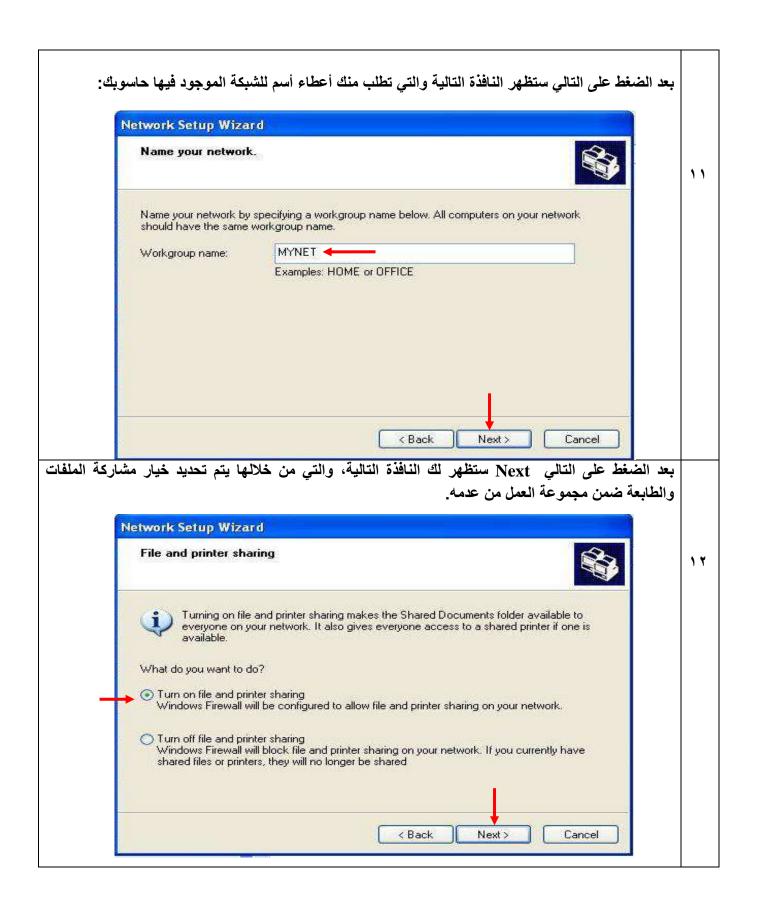
4

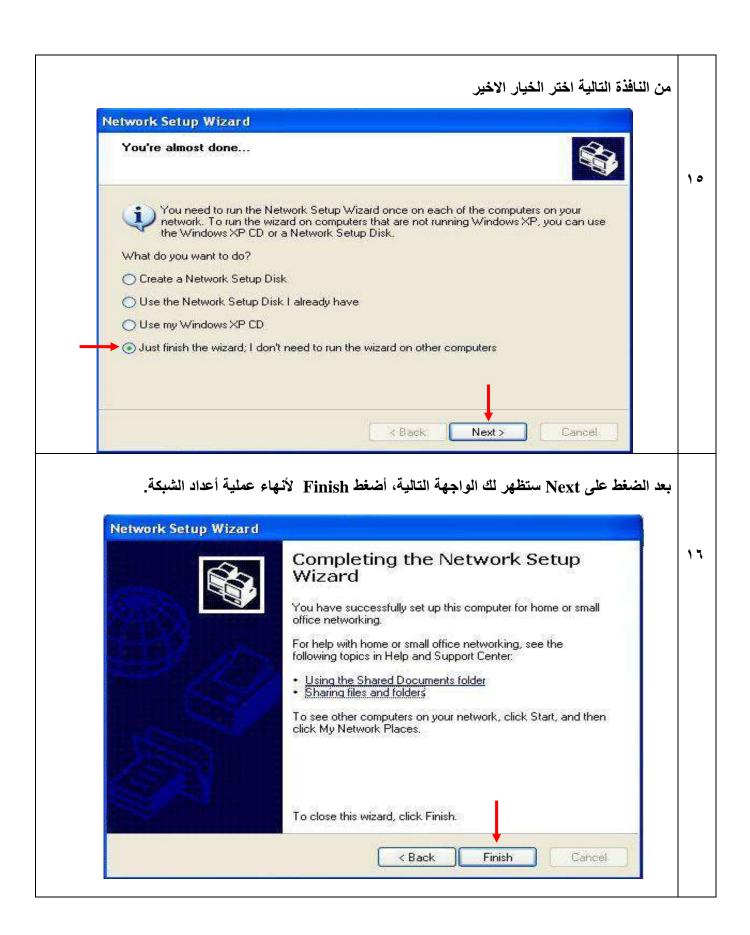
من سطح المكتب أختار My Network Places وفي حال عدم وجودها يمكن إظهارها بالنقر بالزر الأيمن للفأرة على سطح المكتب ثم اختيار Properties ومن ثم من نافذة خصائص العرض اختيار ما يلي:




٥


٦


بعد ظهور أيقونة My Network Places على سطح المكتب قم عزيزي الطالب بالنقر بزر الفأرة الايمن عليها ثم أختر خصائص (Network connections)

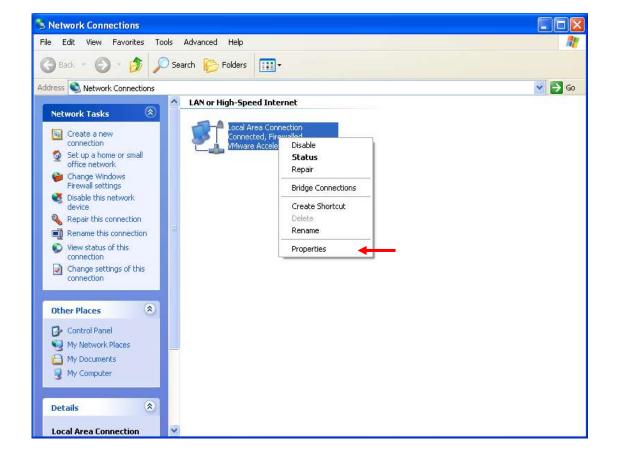


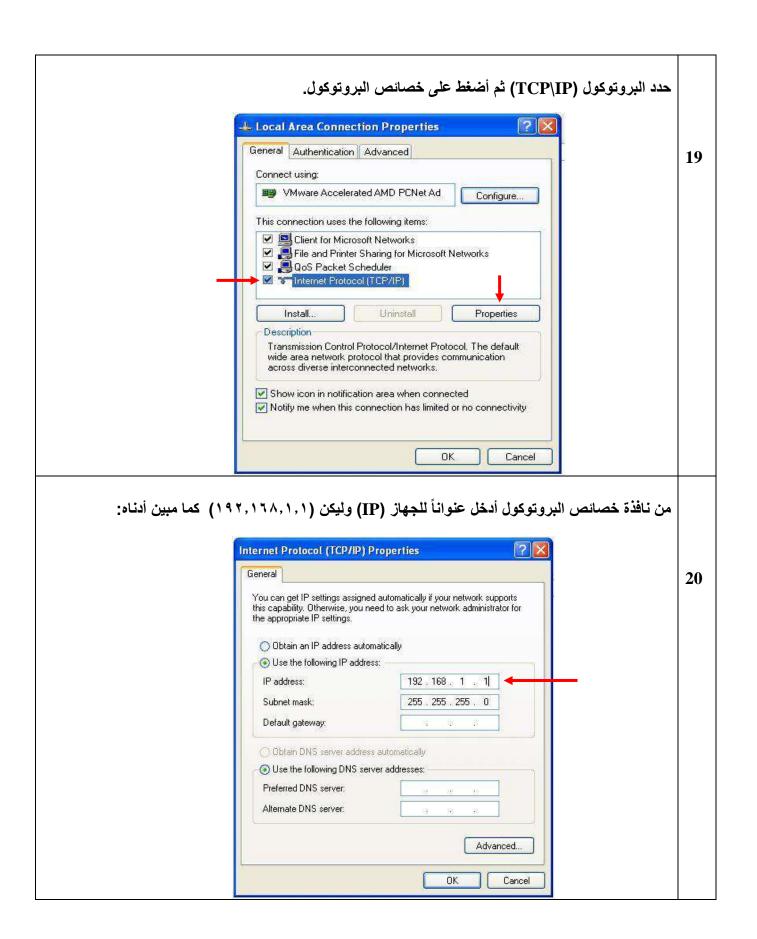
وبعد الضغط على التالى Next ستظهر النافذة التالية للتأكد من أسماء وتعريفات الحقول قبل البدء بتكوين الاتصال. Network Setup Wizard Ready to apply network settings... 1 4 The wizard will apply the following settings. This process may take a few minutes to complete and cannot be interrupted. Internet connection settings: Connecting through another device or computer. Network settings: Computer description: MAHMOUD Computer name: Workgroup name: MYNET To apply these settings, click Next. < Back Next> Cancel بعد الضغط على التالي Next تبدأ عملية البحث عن الأجهزة المتصلة لتثبيتها كما موضح في النافذة التالية: Network Setup Wizard Please wait... ١٤ Please wait while the wizard configures this computer for home or small office networking. This process may take a few minutes.

< Back

Next>

Cancel


بعدها سيطلب منك الجهاز أعادة التشغيل.


1 7

بعد الانتهاء من أعداد الجهاز يجب تحديد عنوان له (IP Address)

من نافذة شبكة الاتصال (Network connections) اضغط بزر الفأرة الأيمن على أيقونة الأتصال المحلي (Local Area Connection) كما مبين أدناه:

٢١ بعد انتهائك عزيزي الطالب من إعداد جهاز الحاسوب الأول يمكنك تكرار نفس الخطوات لأعداد الجهاز الثاني، وليكن عنوان الجهاز الثاني (192.168.1.2).

وللتاكد عزيزي الطالب من أن عملية الاتصال بين الجهازين تمت بنجاح قم بما يلي: من قائمة إبدأ (Start) لأحدى الحواسيب أختر Run ثم في نافذة Run أكتب Cmd لتظهر لك النافذة أدناه، أكتب الامر (Ping) ثم أتبعه بعنوان الحاسوب الاخر في الطرف الثاني وكما مبين في أدناه:

```
Packet Tracer PC Command Line 1.0
PC>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time=6ms TTL=128
Reply from 192.168.1.2: bytes=32 time=6ms TTL=128
Reply from 192.168.1.2: bytes=32 time=6ms TTL=128
Reply from 192.168.1.2: bytes=32 time=5ms TTL=128
Reply from 192.168.1.2: bytes=32 time=5ms TTL=128

Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 4ms, Maximum = 6ms, Average = 5ms

PC>
```

المناقشة:

7 4

- لماذا تم إستخدام سلك ربط شبكي UTP من نوع العبور Cross-over في ربط الجهازين ؟ ولماذا لم يستخدم النوع المباشر؟
 - هل يمكن ربط جهازي الحاسوب شبكياً بطريقة أخرى؟ ماهي؟
 - ماذا ستكون نتيجة الأمر Ping أذا كان هنالك خطأ في الأتصال؟
 - ماهي التطبيقات الممكن الاستفادة منها من خلال شبكة الند للند؟
 - كيف يمكن معرفة أن وصلة ربط الشبكة معرفة في الحاسوب الآلي؟

استمارة قائمة الفحص								
			الفاحصة:	الجهة				
	لة:	المرح	اسم الطالب:					
			ص :	التخص				
اسم التمرين:								
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم				
		%0	ربط الحواسيب باستخدام كيبل العبور cross-over cable	١				
		%۲.	مراحل تعريف وصلة الربط الشبكي مع انجاز وتحقيق الربط الشبكي بين جهازي الحاسوب.	۲				
		%١٠	التحقق من نجاح عملية الاتصال.	٣				
		%١٠	المناقشة	٤				
		%°	انجاز العمل ضمن الوقت المخصص	٥				
			.ع	المجمو				
التوقيع			اسم الفاحص					
		1	ð	التاريخ				

رقم التمرين: (٣ – ٢) الزمن المخصص: ٣ ساعات

اسم التمرين: مشاركة المجلدات ومصادر الشبكة الأخرى بين الحواسيب المرتبطة بشبكة محلية.

مكان التنفيذ: مختبر شبكات الحاسوب.

أولا: الأهداف التعليمية:

إن يكون الطالب قادراً على عمل مشاركة للمجلدات أو مصادر الشبكة الأخرى كالطابعات وسواقات الأقراص بين الحواسيب ضمن الشبكة المحلية الواحدة.

ثانيا: التسهيلات التعليمية:

١ - أجهزة حاسوب مرتبطة بشبكة (في الأقل أثنان) ذات نظام تشغيل (Windows XP).

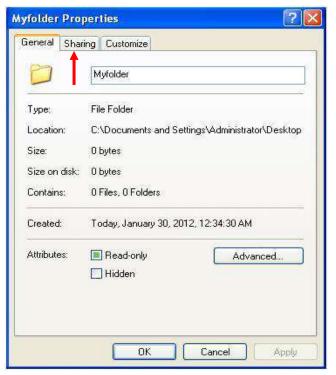
٢ ـ طابعة ليزرية مربوطة على أحدى حواسيب الشبكة.

٣- دفتر ملاحظات.

ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات

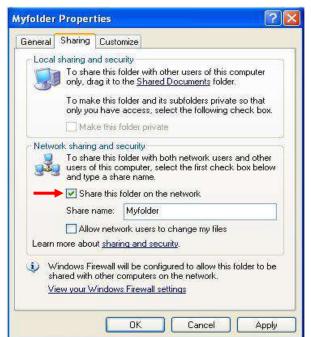
ارتد بدلة العمل الملائمة لجسمك

1


أختر أحدى الحواسيب ضمن الشبكة الموجودة في مختبرك والتي ترغب مشاركة بمشاركة بياناتها أو مصادرها المادية كالطابعة أو سواقة الأقراص الليزرية الموجودة فيها مع بقية الحواسيب ضمن الشبكة.

دعنا عزيزي الطالب نقوم بعمل مشاركة لأحد المجلدات، قد يكون هذا المجلد موجوداً ضمن جهاز الحاسوب لديك ولكن دعنا ننشئ مجلداً جديدا على سطح المكتب ونعطيه الاسم (My folder) كما مبين في الشكل أدناه:

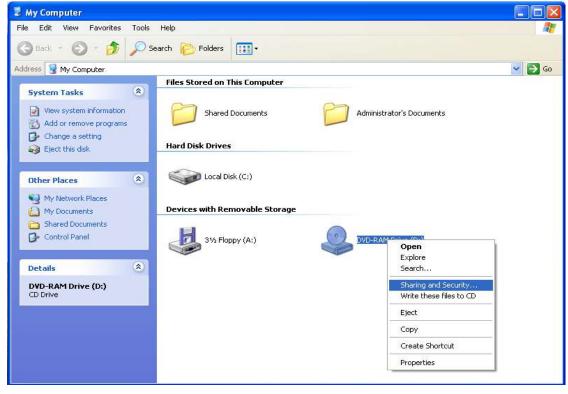
بعد ذلك أضغط بزر الفأرة الأيمن على المجلد الجديد ومن القائمة المنسدلة أختر عزيزي الطالب خصائص المجلد (Properties) كما مبين أدناه:

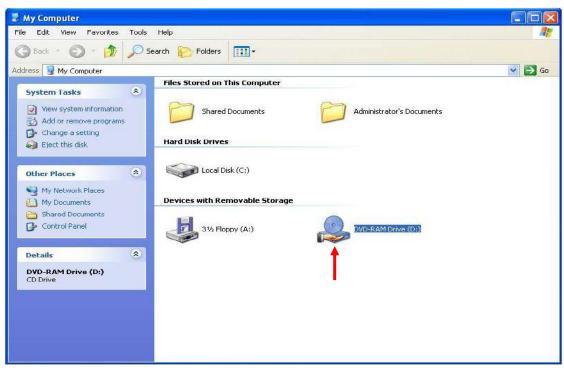


بعد اختيارك لخصائص المجلد ستظهر لك النافذة التالية والتي تعرض الخصائص العامة لهذا المجلد، قم عزيزي الطالب باختيار قائمة المشاركة (Sharing).

بعد أختيارك قائمة المشاركة سوف تظهر لك النافذة على جهة اليسار والتي توضح خيارات المشاركة قم بتفعيل المشاركة عبر الشبكة لهذا المجلد وكما موضح في النافذة على جهة اليمين:

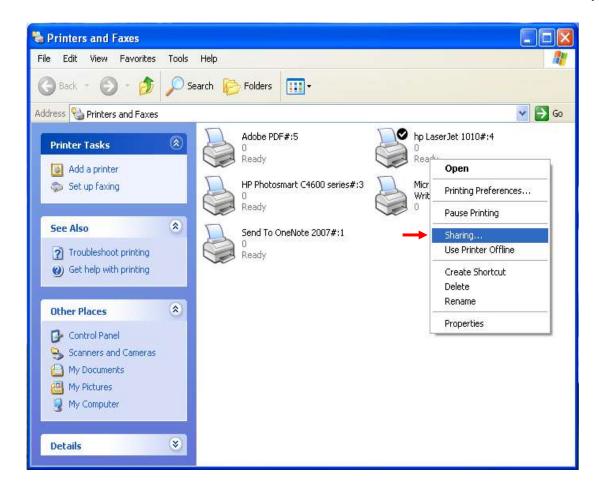


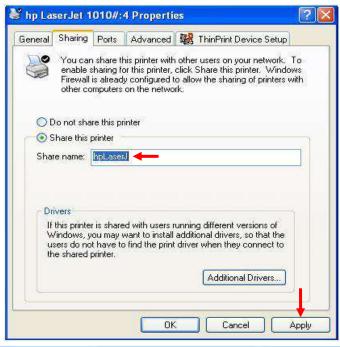

٥

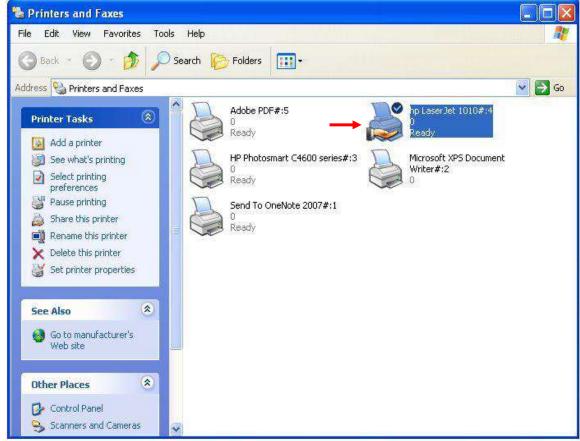

٦

بعد الضغط على موافق Ok نلاحظ تغير شكل المجلد إلى مجلد أسفله يد وهي دلالة على مشاركة الملف بين حواسيب الشبكة كما موضح في الشكل التالى:

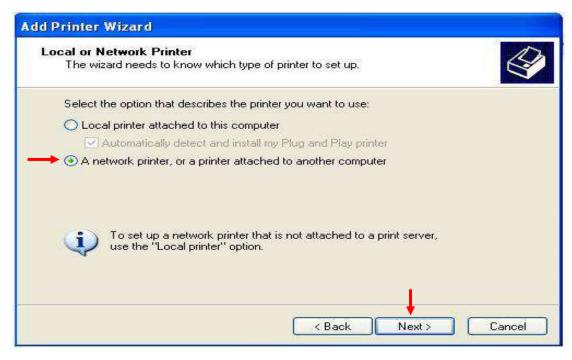
وبنفس الأسلوب يمكنك عزيزي الطالب مشاركة سواقات الاقراص الليزرية وكما مبين في الشكل ادناه:



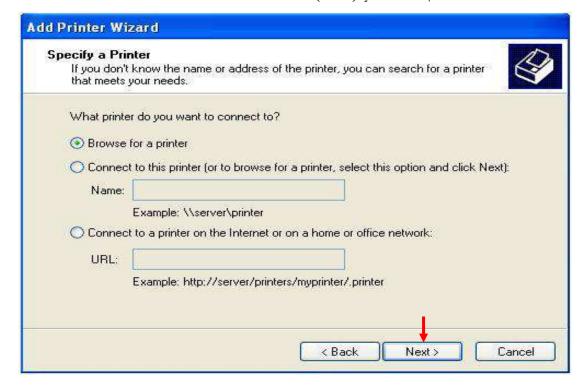

أما اذا رغبت عزيزي الطالب بمشاركة الطابعة المربوطة على أحد حواسيب الشبكة مع باقي الحواسيب فما عليك آلا اتباع الخطوات التالية:



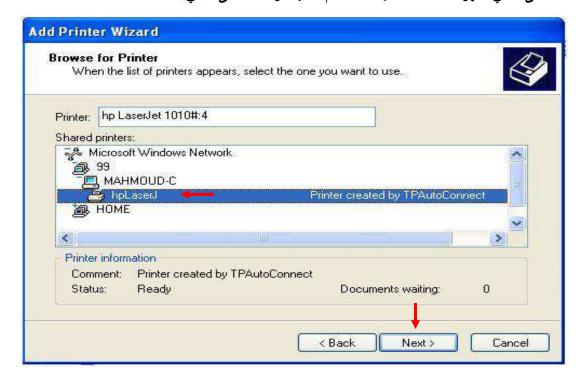
من قائمة أبدأ اختر طابعات (Printers and Faxes) لتظهر لك نافذة فيها جميع الطابعات المربوطة على الحاسوب الذي تعمل عليه، أختر الطابعة التي تنوي مشاركتها مع بقية حواسيب الشبكة وأضغط عليها بزر الفأرة الأيمن كما موضح بالشكل أدناه:



من القائمة المنسدلة أضغط على مشاركة (Sharing) لتظهر لك النافذة التالية: يمكنك تغيير أسم الطابعة أو ترك الاسم كما هو ثم أضغط (Apply)

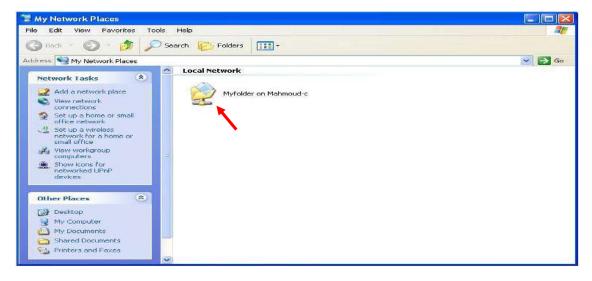


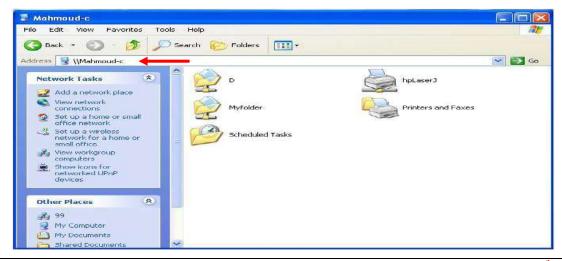
ولأضافة الطابعة الى بقية الحواسيب ضمن الشبكة قم عزيزي الطالب بالخطوات التالية: من قائمة أبدأ اختر طابعات (Printers and Faxes) ثم أختر أضافة طابعة (Add Printer)



أختر الخيار طابعة ضمن الشبكة ثم أضغط التالي (Next)

١.


بعد الضغط على التالي تظهر لك النافذة التالية، حدد أسم الطابعة وأضغط على التالي:


بعدها أضغط على أنهاء لأتمام العملية:

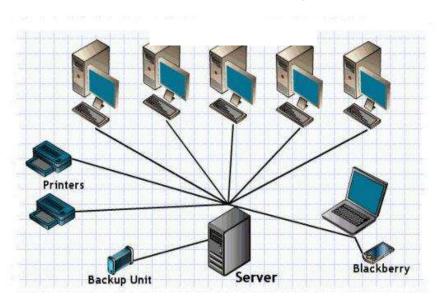
في حالة مشاركة المجلدات فبعد اتمام عملية المشاركة يمكنك أن ترى المجلد الذي تمت مشاركته (Myfolder) من أي حاسوب ضمن الشبكة وذلك بالضغط على أيقونة (My Network Places) من على سطح المكتب وستجد المجلد أو سواقة الاقراص الذي تمت مشاركته وكما مبين في الشكل أدناه:

أو يمكنك عرض جميع مصادر الشبكة المشتركة ذلك بكتابة أسم الحاسوب الذي أقمت عليه عملية المشاركة تسبقه (اسم الجهاز//) لتظهر لك النافذة التالية:

المناقشة

- ماهي الحالات التي لايمكن للمجلد من المشاركة Share بين حواسيب الشبكة؟
- هل كافة الملفات الموجودة داخل المجلد المشترك سوف تكون مشتركة أيضاً بين حواسيب الشبكة؟
- ۱۳ هل يستطيع أحد مستخدمي الحواسيب في الشبكة من حذف المجلدات أو الملفات المشتركة الموجودة في أحد حواسيب الشبكة؟
 - مالفائدة من مشاركة سواقة الاقراص الليزرية؟
 - هل هنالك طريقة أخرى للوصول الى المشتركات ضمن الشبكة غير الطريقة التي يمت مناقشتها؟

استمارة قائمة الفحص								
		الفاحصة:	الجهة					
الب: المرحلة:								
التخصص :								
اسم التمرين:								
جة الملاحظات داء		الخطوات	الرقم					
	%17	عمل مشاركة للمجلدات	١					
	%17	عمل مشاركة لسواقة الاقراص الليزرية	۲					


۱ عمل مشاركة للمجلدات
۲ عمل مشاركة لسواقة الاقراص الليزرية
۲ عمل مشاركة للطابعة
۲ عمل مشاركة للطابعة
۱ المناقشة
۱ المناقشة
۱ انجاز العمل ضمن الوقت المخصص
۱ المجموع
۱ التاريخ

(Client\Server Network) شبكات الزبون / الخادم ("- ")

يتطلب تكوين هذه الشبكة وجود حاسوب متخصص يعمل على توفير البيانات والخدمات بشكل دائم. يتصل به باقي الحواسيب للمشاركة بهذه البيانات وللتواصل مع غيرها، يطلق على هذا الحاسوب أسم المزود ويطلق على بقية الحواسيب المتصلة به أسم الزبون.

بداية فلنحاول التعرف عن قرب على الخادم. الخادم قد يكون الخادم جهاز حاسوب شخصي يحتوي على مساحة تخزين كبيرة ومعالج قوي وذاكرة وفيرة ، كما أنه من الممكن أن يكون جهازاً مصنوعاً خصيصا ليكون خادم شبكات وتكون له مواصفات خاصة.

شبكات الزبون/ الخادم والتي تسمى أيضا شبكة قائمة على خادم أو (Sever Based Network) هذه الشبكات تكون قائمة على خادم مخصص ويكون عمله فقط كخادم و لا يعمل كزبون كما هو الحال في شبكات الند للند، والشكل أدناه يوضح شبكة الزبون / الخادم.

شكل (٣-٥) شبكة الزبون / الخادم

عندما يصبح عدد الأجهزة في شبكات الزبون/ الخادم كبيراً يكون من الممكن إضافة مزود آخر، أي أن شبكات الزبون/ الخادم قد تحتوي على أكثر من خادم واحد عند الضرورة و لكن هذه الأجهزة (الخوادم) لا تعمل أبدا كزبائن، وفي هذه الحالة تتوزع المهام على الـ (الخوادم) المتوافرة مما يزيد من كفاءة الشبكة.

(٣-٣-١) مميزات شبكات الزبون/الخادم

أن من أهم مميزات شبكات الزبون/ الخادم و التي تتفوق فيها على شبكة الند للند هي:

- ١- النسخ الاحتياطي للبيانات وفقا لجدول زمني محدد.
 - ٢- حماية البيانات من الفقد أو التلف.
 - ٣- تدعم ألاف المستخدمين.
- ٤- تزيل الحاجة لجعل أجهزة الزبائن قوية وبالتالي من الممكن أن تكون أجهزة رخيصة بمواصفات متواضعة.
- ٥- في هذا النوع من الشبكات تكون موارد الشبكة متمركزة في جهاز واحد هو المزود مما يجعل الوصول إلى المعلومة أو المورد المطلوب أسهل بكثير مما لوكان موزعا على أجهزة مختلفة، كما يسهل إدارة البيانات و التحكم فيها بشكل أفضل.
- 7- يعتبر أمن الشبكة (Security) من أهم الأسباب لاستخدام شبكات الزبون / الخادم، نظرا للدرجة العالية من الحماية التي يوفرها الخادم من خلال السماح لشخص واحد (أو أكثر عند الحاجة) هو مدير الشبكة (Administrator) بالتحكم في إدارة موارد الشبكة وإصدار أذونات للمستخدمين للإفادة من الموارد التي يحتاجونها فقط ويسمح لهم بالقراءة دون الكتابة إن كان هذا الأمر ليس من تخصصهم.

Types of Servers أنواع الخوادم المخصصة (٣-٣-٣)

الخادم هو جهاز حاسوب يحوي نظام تشغيل مخصص لإدارة الشبكات وقد يكون هذا النظام مخصص لمهمة محددة وبعضها يكون قد صمم لكي يكون نواة الشبكة حيث انه مخصص لاستقبال الطلبات وتقديم البيانات أو مشاركة موارد الشبكة وتشغيل تطبيقات لأجهزة حاسوب أخرى محلية أو على الأنترنت. من أهم أنواع الخوادم (Servers) المخصصة والمتوافرة في بيئة عمل خادم ويندوز ٢٠٠٣:

(Domain Controller Server) ا- خادم المتحكم بالمجال

يحوي هذا الخادم جميع معلومات إدارة الاتصال بين المستخدمين في الشبكة. وهو معني بالاستجابة لطلبات التوثيق والأمن.

:(File Server) خادم الملفات

هو جهاز يوفر خدمة تخزين ومشاركة مركزية عبر الشبكة حيث انه يسمح بخاصية التحكم في مشاركة تلك الملفات لأشخاص معيين في الشبكة أو توفيرها للكل. على سبيل المثال يمكن وضع أي ملف في خادم الملفات والسماح للجميع بالاطلاع عليه بدلا من إرساله لكل من في الشبكة.

: (Print Server) خادم الطباعة

وهو الخادم الذي يوفر خدمة مركزية أيضًا عبر الشبكة لعمليات الطباعة. ويمكن التحكم من خلاله بأولوية الطباعة وتحديدها لمجموعات دون أخرى أو تقديم مستخدمين دون آخرين في الأولوية. ويكون هذا الخادم موصل بطابعة أو اكثر من جهة وفي الجهة الأخرى بالشبكة.

٤- خادم خدمة نطاق الاسم (DNS Server):

دائما ما يكون في الشبكات عنوان محدد لكل جهاز فيها (IP Address) يتم من خلاله التعرف على هوية الجهاز والمستخدم وبالتالي تحديد صلاحياته في أي إجراء يقوم به. ووظيفة خادم خدمة النطاق هي ترجمة اسم الجهاز إلى عنوان (IP) ليتم استخدامه خلال عمليات الاتصال عبر الشبكة.

أن هذا الخادم يستخدم أيضا كتكنلوجيا موحدة لإدارة أسماء المواقع على شبكة الإنترنت وغيرها من المجالات، حيث يسمح للمستخدم بكتابة اسم الموقع في المتصفح مثل (www.google.com) على جهاز الحاسوب الخاص بك ليقوم هذا الخادم تلقائيا بإيجاد عنوان هذا الموقع على شبكة الإنترنت.

٥- خادم التطبيقات والبرامج (Application Server):

يسمح هذا الخادم للمستخدمين أو الزبائن بتشغيل البرامج الموجودة على الخادم انطلاقا من أجهزتهم ولكن دون الحاجة إلى تخزينها أو تحميلها على أجهزتهم تلك، و لكنهم يستطيعون تخزين فقط نتائج عملهم على تلك البرامج.

٦ -خادم البريد (Mail Server):

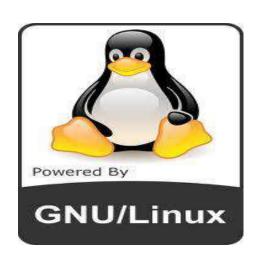
يدير هذا الخادم المراسلة الإلكترونية بين مستخدمي الشبكة.

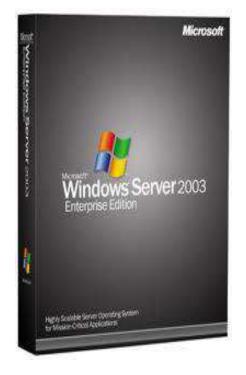
(Remote Access/VPN Server) حادم الأتصال عن بعد

والذي يتيح للحاسوب الزبون الاتصال بالشبكة عن بعد باستخدام تقنية الاتصال بالطلب الهاتفي (-Dial) أو من الاتصال المؤمن بالشبكة الافتراضية الخاصة (VPN).

۱- خادم الویب (Web Server):

يخدم هذا الخادم متصفح الأنترنت عن طريق تحميل الملف المطلوب من القرص وتوصيله الى المستخدم وذلك عبر الشبكة حيث يعرض الملف على متصفح الويب لدى حاسوب المستخدم.


(٣-٣-٣) أنظمة التشغيل المستخدمة في شبكات الزبون/الخادم


يعمل خادم الشبكة و نظام التشغيل كوحدة واحدة، فمهما كان الخادم قويا و متطورا فإنه إن لم يتوافر نظام تشغيل قادر على الإفادة من قدرات هذا الخادم، فإنه سيكون عديم الفائدة. حتى وقت ليس بالبعيد كان برنامج نظام تشغيل الشبكات يضاف إلى نظام تشغيل الجهاز المثبت مسبقا عليه ومثال عليه البرنامج

(Microsoft LAN Manager) والذي كان يسمح للأجهزة الشخصية بالعمل في شبكة محلية، و كان موجها لأنظمة التشغيل MS-DOS, UNIX,OS/2، حيث كان يضيف لها قدرات الانضمام إلى الشبكة.

في أنظمة التشغيل الحديثة تم دمج نظام تشغيل الشبكات بنظام التشغيل الكلي ليصبح نظاما واحداً متكاملاً، ومن أهم نظم التشغيل الداعمة لشبكات الزبون/خادم Windows 2000 Server الزبون/خادم Windows 2008 Server ،Windows 2003 Server ،NT Server التشغيل الأخرى مثل Linux ، UNIX .

رقم التمرين: (٣ – ٣)

اسم التمرين: التدريب على حماية المجلدات في شبكة الزبون/ الخادم

مكان التنفيذ: مختبر شبكات الحاسوب

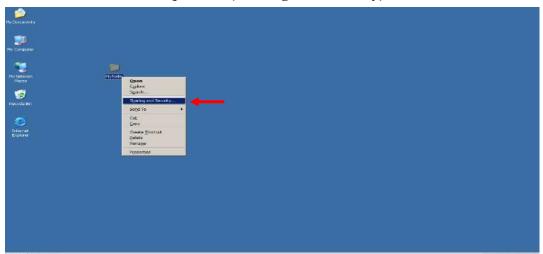
أولا: الأهداف التعليمية:

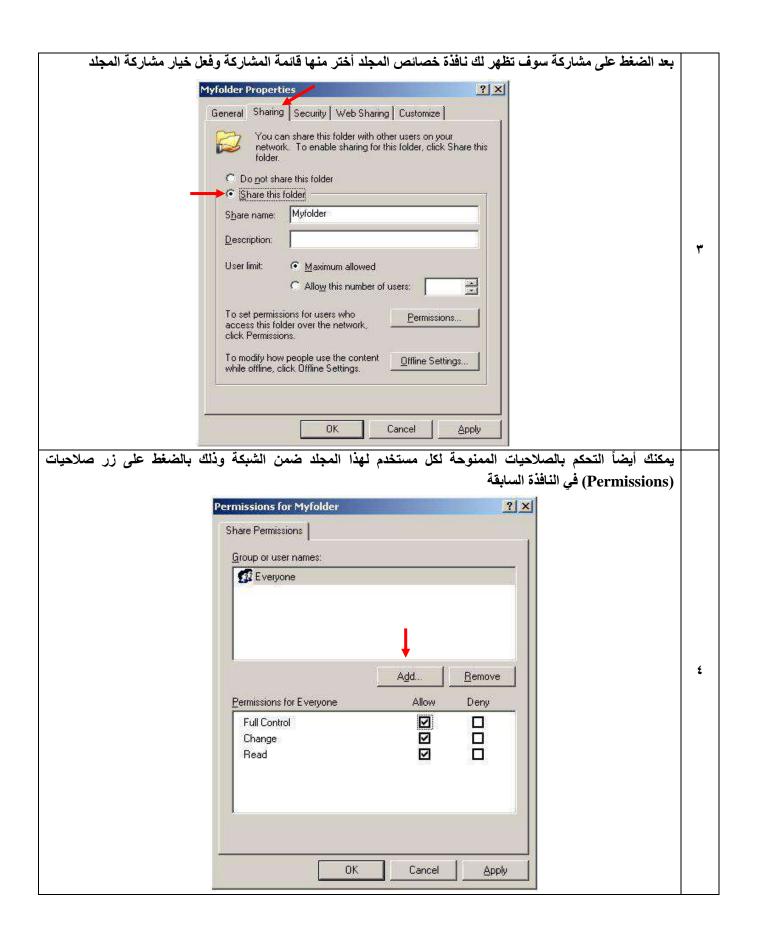
إن يكون الطالب قادراً التحكم في حماية معلوماته ضمن شبكة الزبون/ الخادم ثانيا: التسهيلات التعليمية:

1- جهاز حاسوب منصب عليه نظام تشغيل (Windows XP) سيكون الزبون في الشبكة.

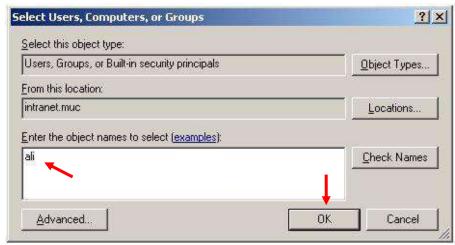
2- جهاز حاسوب منصب عليه نظام تشغيل (Windows Server 2003) سيكون الخادم ضمن الشبكة.

٣ ـ دفتر ملاحظات

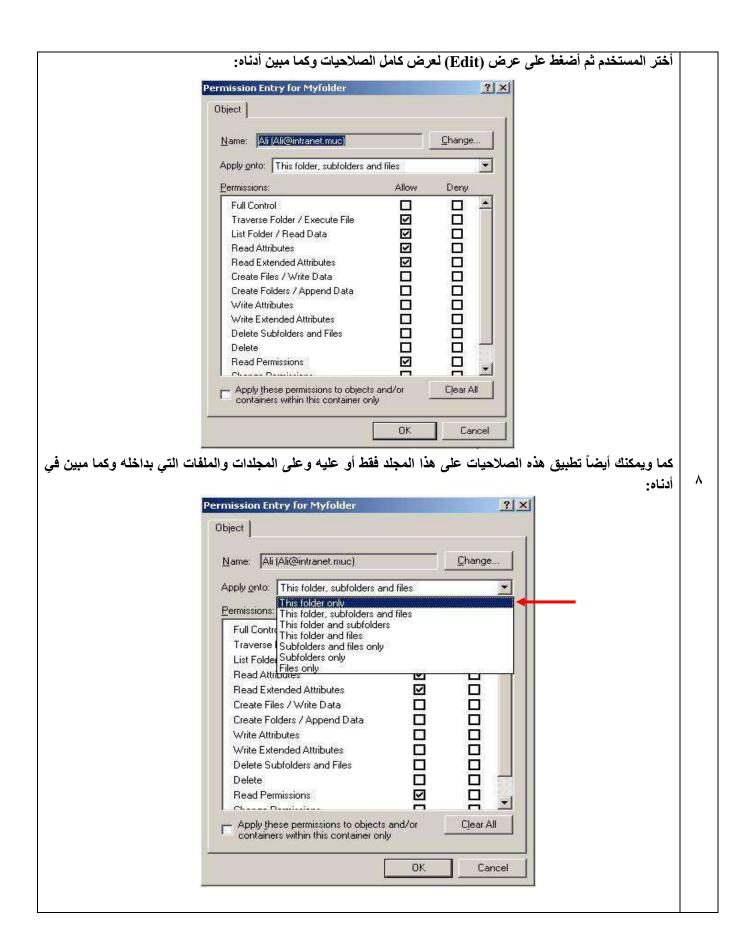

ثالثا: خطورات العمل، النقاط الحاكمة، الرسومات


ارتد بدلة العمل الملائمة لجسمك

أحدى الطرق التي تستطيع من خلالها عزيزي الطالب حماية المعلومات التي تقوم بمشاركتها ضمن شبكة الزبون/الخادم مع بقية الحواسيب هي تحديد الصلاحيات لكل مستخدم ضمن الشبكة وذلك كما يلي:


أنشئ مجلداً جديداً على سطح المكتب للحاسوب المزود وسمه (Myfolder) ثم قم بعمل مشاركه لهذا المجلد وذلك بالضغط عليه بزر الفأرة الأيمن واختيار مشاركة (Sharing and Security) كما موضح بالشكل أدناه:


١


من النافذة السابقة نلاحظ أن جميع مستخدمي الشبكة سوف يكون لهم كامل الصلاحيات (Full Control) للتعامل مع المجلد المشترك يمكنك عزيزي الطالب تحديد صلاحيات كل مستخدم ضمن الشبكة وذلك عن طريق أضافة المستخدم أضغط على أضافة (Add) في الناقذة السابقة لتظهر لك النافذة ادناه، أكتب أسم أحد المستخدمين ضمن الشبكة كما مبين أدناه:

بعد الضغط على موافق سيتم أضافة المستخدم للقائمة السابقة وبذلك يمكنك التحكم بالصلاحيات الممنوحة له في أستخدام المجلد المشترك.

يمكنك عزيزي الطالب تحديد الصلاحيات من خلال قائمة السرية أيضاً والتي تسمح بتحديد الصلاحيات للمستخدمين المحليين (على نفس الحاسوب) أو لمستخدمي الشبكة وكما مبين في أدناه: **Myfolder Properties** General Sharing Security Web Sharing Customize Group or user names: Administrator (INTRANET\Administrator) Administrators (INTRANET Administrators) Ali (Ali@intranet.muc) **SYSTEM** Add... Remove Permissions for Ali Allow Deny Full Control Modify $\overline{\mathbf{Z}}$ Read & Execute V List Folder Contents V Read Write For special permissions or for advanced settings, Advanced click Advanced. OK Cancel Apply بالضغط على زر أعدادات متقدمة (Advanced) يمكنك عزيزي الطالب التحكم بصورة اكثر بالصلاحيات الممنوحة لكل مستخدم وكما مبين في أدناه: ? | X Advanced Security Settings for Myfolder Permissions | Auditing | Owner | Effective Permissions | To view more information about special permissions, select a permission entry, and then click Edit. Permission entries: Name Type Permission Inherited From Apply To This folder, subfolders Ali (Ali@intranet.muc) Read & Execute <not inherited: Administrator (INTRA... Administrators (INTR... Full Control Full Control This folder, subfolders... This folder, subfolders... Allow Parent Object Parent Object Allow Allow SYSTEM Full Control Parent Object This folder, subfolders... ٧ Edit Add. Remove Allow inheritable permissions from the parent to propagate to this object and all child objects. Include these with entries explicitly defined here. Reglace permission entries on all child objects with entries shown here that apply to child objects Learn more about access control OK Cancel Apply

المناقشة:

- مالفائدة المتوخاة من تقليل الصلاحيات؟
- هل يمكنك التحكم بالصلاحيات في أنظمة التشغيل مثل Windows Vista, Windows ?
 - مالفرق بين تحديد الصلاحيات عن طريق قائمة المشاركة أو عن طريق قائمة السرية؟
 - الى أي نوع يمكنك تصنيف الخادم السابق؟

استمارة قائمة الفحص						
			الفاحصة:	الجهة		
طالب: المرحلة: ص:						
اسم التمرين:						
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم		
		% 0	التأكد من عمل الخادم ومن ان بقية الحواسيب معرفة لديه	١		
		%10	تحديد الصلاحيات عن طريق قائمة المشاركة	۲		
		%10	تحديد الصلاحيات عن طريق قائمة السرية	٣		
		%1.	المناقشية	٣		
		%0	أنجاز العمل ضمن الوقت المخصص	٤		
	المجموع					
اسم الفاحص						
التاريخ						

(Hybrid Network) الشبكات المختلطة (+ - ٣)

من الممكن الجمع بين مميزات كل من شبكات الند للند وشبكات الزبون/ الخادم وذلك بدمج النوعين معا في شبكة واحدة وهذا ما يطلق عليه شبكة مختلطة.

الشبكة المختلطة تقدم المميزات التالية:

- ١ تحكم وادارة مركزية للبيانات.
- ٢ موقع مركزي لموارد الشبكة.
- ٣ الموصول إلى الملفات و الطابعات مع المحافظة على الأداء الأمثل لأجهزة المستخدمين و أمنها.
 - ٤ توزيع نشاطات المعالجة (Processing Activity) على أجهزة الشبكة.

وفي هذه الحالة ستكون الشبكة قائمة على خادم ولكنها تستطيع القيام بمهام شبكات الند للند عند الضرورة، ويستخدم هذا النوع من الشبكات في مثل الحالات التالية:

- ١ حدد المستخدمين 10 أو أقل.
- ٢ جعمل المستخدمون على مشروع مشترك و متصل.
 - ٣ هناك حاجة ماسة للحفاظ على أمن الشبكة.

ولكن هذا النوع من الشبكات يتطلب الكثير من التخطيط لضمان عدم اختلاط المهام و الإخلال بأمن الشبكة.

تعتبر احتياجات شبكات الزبون/ الخادم أكبر من شبكات الند للند وبالتالي فتكلفتها أكبر بكثير، فالخادم والذي يكون مسؤولا عن إدارة كل موارد الشبكة يجب أن يحتوي على معالج قوي أو أكثر من معالج واحد، آما أنه يجب أن يحتوي على كمية ضخمة من الذاكرة وقرص صلب ضخم أو عدة أقراص ليقوم بواجبه على أكمل وجه.

أسئلة الفصل الثالث

س ١: ماهي أنواع شبكات الحاسوب حسب النطاق الجغرافي الذي تعمل به؟

س ٢: ما هي الخصائص التي تمتاز بها شبكات الحاسوب المحلية LAN؟

س٣: ما هي الخصائص التي تمتاز بها شبكات الحاسوب الإقليمية MAN؟

س ٤: ما هي الخصائص التي تمتاز بها شبكات الحاسوب الواسعة WAN?

سo: ما المقصود بشبكة الند للند Peer- to - Peer?

س ٦: ما هي مميزات شبكة الند للند ؟ وماهي عيوبها ؟

س٧: ماهي أنظمة تشغيل مايكروسوفت المتوافقة مع شبكات الند للند؟

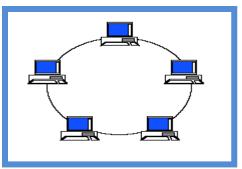
س٨: ما المقصود بشبكات الزبون / الخادم (Client\Server Network)؟

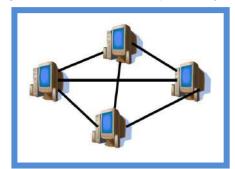
س ٩: ماهي مميزات شبكات الزبون - الخادم؟

س ١٠: ماهي أهم أنواع الخوادم Servers المخصصة والمتوافرة في بيئة عمل خادم ويندوز ٢٠٠٣؟

س ١١: ماهي أنظمة التشغيل المستخدمة في شبكات الزبون - الخادم؟

س٢١: اشرح بخطوات مراحل حماية المجلدات في شبكة الزبون - الخادم؟


الفصل الرابع التصاميم الأساسية للشبكات


أهداف الفصل الرابع

من المتوقع إن يتعرف الطالب على مجموعة من المعارف العلمية الخاصة بالتعرف على التصاميم الأساسية للشبكات المحلية (LAN) ومميزاتها وكيفية إنشاء تلك التصاميم من الشبكات عملياً.

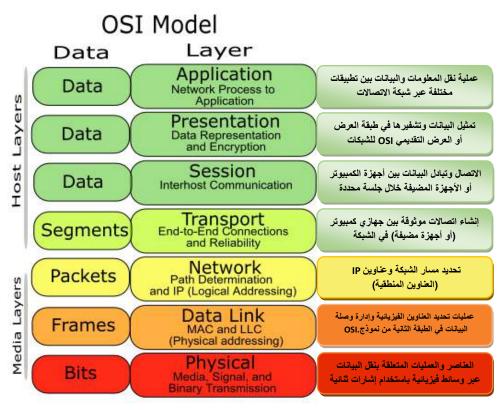
محتويات الفصل الرابع

- (١-٤) مقدمة في تصاميم الشبكات المحلية
- (٤-٤) نظام الترابط المفتوح OSI Model
- Networks Topology طبوغرافية الشبكات (٣-٤)
- (٤-٤) تصميم شبكات النطاق المحلى نوع BUS الناقل
- (٤-٥) تصميم شبكات النطاق المحلي نوع STAR النجمة
- (٢-٤) تصميم شبكات النطاق المحلي نوع RING الحلقة

الفصل الرابع التصاميم الأساسية للشبكات

(٤ ـ ١) مقدمة في تصاميم الشبكات المحلية

من خلال ما تقدم في الفصول السابقة، أكيد أصبحت مدركاً عزيزي الطالب أن الشبكة بشكل عام هي وصل حواسيب موضوعة على مساحة محددة من أجل الاستخدام المشترك للمعلومات وهي تقدم إمكانيات مذهلة في مجال تبادل المعطيات ومجال التعامل مع الملفات لعدد من المستخدمين بآن واحد معًا، بالإضافة إلى أنه يمكن لمستخدمي الشبكة أن يشاركوا في الطابعات والملفات وسواقات الأقراص الليزرية وحتى جهاز الفاكس. وشبكات الاتصال وضعت عمومًا للمشاركة في أمور مثل معالجة النصوص وبرامج أوراق العمل وفي الطابعات وفي الربط على أجهزة حاسوب وشبكات واسعة وأنظمة البريد هي وظيفة شبكة الاتصال.


في بداية ظهور الشبكات كانت تتكون من عدد قليل من الأجهزة ربما لا يتجاوز العشرة متصلة مع بعض، ومتصل معها جهاز طباعة، هذا النوع من التشبيك أصبح يعرف بشبكة النطاق المحلي ضمن المساحة المحدودة، فالشبكات المحلية في العادة تكون محتواه داخل مكتب، أو مجموعة من المكاتب داخل بناية واحدة، وتقدم هذه الشبكات في وقتنا الحالي سرعة كبيرة لتبادل البيانات والموارد مما يشعر المستخدم الذي يستفيد من موارد الشبكة أن هذه الموارد موجودة على جهازه الشخصي. سيتناول هذا الفصل الشبكات المحلية بكافة أنواعها والمبادئ المستخدمة في تصميمها مع إعطاء أمثلة تطبيقية مصورة للتوضيح قبل التعرف على خواص ومميزات الشبكات المحلية وكيفية تصميمها وإنشائها لابد لنا من التعرف على بعض الجوانب الفنية والتقنيات والأنظمة العالمية التي تم الاتفاق عليها في تصميم وإنشاء مثل هذا النوع من الشبكات، إضافة إلى المعرفة الفنية بكل نوع من أنواع طوبوغرافيات الربط الشبكي وما هي الفوائد والمساوئ الملحوظة لكل نوع، كما سوف نظرق عزيزي الطالب إلى كيفية إجراء العنونة لأجهزة الحواسيب الخاصة بالشبكة، بالطبع سيصاحب الشرح تقديم العديد من التمارين العملية المصورة التي من المفترض أن تقوم بعملها مختبرياً لغرض اكتساب الدراية والمعرفة الفنية اللازمة حول كيفية تصميم وإنشاء الأنواع المختلفة من الشبكات المحلية حسب طوبوغرافيات الربط.

:Open System Interconnection نظام الترابط المفتوح (٢ – ٢)

سننتقل الآن عزيزي الطالب لنلقي نظرة على أهم المعابير التي يعمل عليها عتاد الشبكة عندما يعمل كل منهما على حدة أو بالاشتراك مع الأخر، حيث يقوم مصنعو برامج وعتاد الشبكة بإتباع قواعد ودلائل فنية معينة عندما يقومون بتصميم منتجاتهم وأكثر هذه القواعد انتشارا هي مجموعة من التوصيات المطورة من قبل المنظمة الدولية للمعايير ISO وتعرف هذه التوصيات باسم النموذج المرجعي لنظام الوصلات المفتوحة OSI.

نشرت الجمعية الدولية للموصفات القياسية ISO النموذج المرجعي (الطبقات السبع) للتوصيل البيني للأنظمة المفتوحة عام ١٩٧٧ ليصف طريقة تقييم ووضع خصائص الأنشطة التي يجب أن تحدث بين أجهزة الاتصال والشبكة.

يتكون نظام الترابط المفتوح (OSI) Open System Interconnection (OSI) من سبعة طبقات منفصلة تربط بعضها البعض ولكل Seven Layers، حيث يقسم النموذج نشاطات الشبكة إلى سبع طبقات منفصلة تربط بعضها البعض ولكل طبقة مجموعة معينة من النشاطات الواجب تنفيذها فيها ليتم الاتصال بين الجهازين بنجاح، الشكل أدناه يوضح تسلسل هذه الطبقات من الأسفل إلى الأعلى مع التعرف على التسمية العلمية لحزمة المعلومات في كل طبقة.

OSI يوضح الطبقات السبع لنظام الترابط المفتوح

♣ الطبقة الأولى - الطبقة الفيزيائية (Physical):

وهي الطبقة المسؤولة عن إرسال البيانات التي تم تجهيزها من قبل الطبقات العليا عبر وسط الإرسال. يتم تمثيل البيانات التي يمكن أن تكون معلومات كنصوص، صور، أصوات، بوجود نبضات كهربائية تدعى جهد (Voltage) على الأسلاك النحاسية الناقلة أو بنبضات ضوئية ضمن الألياف البصرية، تدعى عملية الإرسال بالترميز أو التعديل و يتم تنفيذها باستخدام الكابلات و الموصلات.

♣ الطبقة الثانية - طبقة وصلة البيانات (Data-Link):

الوظائف والفائدة التي يمكن أن تمتاز بها هذه الطبقة يمكن تلخيصها بما يلي :

- ١ تقدم هذه الطبقة وصولاً إلى وسائط التشبيك والإرسال الفيزيائي، مما يمكن البيانات من إيجاد وجهتها المقصودة في الشبكة.
- ٢ تقدم عبوراً موثوقاً به للبيانات على وصلة فيزيائية باستعمال العناوين MAC (وهو العنوان الفيزيائي الموجود على بطاقة الشبكة).
 - ٣ تستعمل التأطير (Framing) لتنظيم أو تجميع بتات البيانات والتحكم بانسيابيتها.
- ٤ تستعمل الـ MAC لاختيار أي كمبيوتر سيرسل بياناته الثنائية ، من مجموعة حواسيب تحاول كلها الإرسال في الوقت نفسه.

بعد أن تقوم بتقسيم البيانات إلى أجزاء أصغر تسمى Frames تضاف إليها جزئي المقدمة Header رتمثل معلومات كشف الخطأ للتأكد من خلو الإطارات من أي أخطاء).

♣ الطبقة الثالثة - طبقة الشبكة (Network):

وهي مسؤولة عن عنونة الرسائل و ترجمة العناوين المنطقية و الأسماء إلى عناوين مادية تفهمها الشبكة.

العنوان المنطقي قد يكون بريد إلكتروني أو عنوان إنترنت بهذا الشكل :١٩٢,١٦٨,٠,١٠٠ أما العنوان المادي فيكون بهذا الشكل: ٥.٨.٥1.60.8c.01.03.

وتقوم هذه الطبقة باختيار أنسب مسار بين الجهاز المرسل و المستقبل، لهذا فإن أجهزة الموجهات Routers تعمل من ضمن هذه الطبقة.

لطبقة الرابعة - طبقة النقل (Transport): ←

هذه الطبقة تهيء تمرير البيانات بين الأنظمة أو المضيفات Hosts وتحدد بنية الرسالة Message هذه الطبقة تهيء تمرير البيانات بين الأنظمة أو المضيفات لمراجعة الأخطاء ، وتضم خدمات النقل الخدمات الأساسية التالية:

- ١ تقسيم بيانات التطبيقات الأعلى إلى أجزاء segments.
 - ٢ إقامة العمليات بين الأجهزة المرسلة و المستقبلة.
- حضمان وثوقية ودقة البيانات الواصلة إلى المستقبل حيث من خلالها يقوم الجهاز المستقبل بإرسال رسالة إلى المرسل يؤكد فيها تسلمه للبيانات.
 - ٤ التحكم بتدفق هذه البيانات.
 - ٥ -كما تقوم باختيار المسار الأفضل لإرسال تلك البيانات.

أهم بروتوكولات الطبقة الرابعة هما البروتوكولان TCP و UDP وهما يستخدمان أرقام المنافذ (أو المقابس) لتعقب المحادثات المختلفة التي تعبر الشبكة في الوقت نفسه.

ب الطبقة الخامسة - طبقة الجلسة (Session):

تسمح طبقة الجلسة لتطبيقين بمزامنة اتصالاتهما وتبادل البيانات، تقسم هذه الطبقة الاتصالات بين نظامين إلى وحدات حوار وتقدم نقاط التزامن القصوى و الدنيا خلال هذا الاتصال، بمعنى آخر إنها تسمح لبرنامجين على كمبيوترين مختلفين بإجراء اتصال واستخدام هذا الاتصال وإنهائه بين الجهازين، كما أن هذه الطبقة مسؤولة عن التعرف على الأجهزة وأسمائها وإصدار تقارير عن الاتصالات التي تجريها و تقوم هذه الطبقة أيضا ببعض مهام الإدارة مثل ترتيب الرسائل المرسلة حسب وقت إرسالها ومدة إرسال كل رسالة.

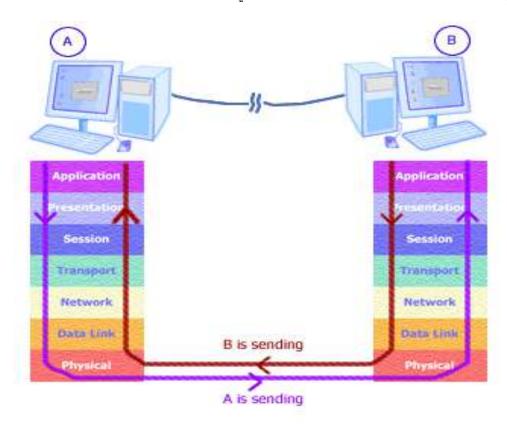
ومن البروتوكولات التي تعمل ضمن هذه الطبقة ما يلي:

- . x-window نظام
- ٢ بروتوكول الجلسة (AppleTalk ASP) .
- ٣ بروتوكول التحكم بالجلسة لبنية الشبكة الرقمية (DNA SCP).
 - ؛ -برونوكول Network File System) NFS).

كما تقوم هذه الطبقة بأخذ عينة من آخر جزء من البيانات تم إرساله عند توقف الشبكة عن العمل و ذلك لكي يتم إرسال البيانات عندما تعود الشبكة إلى العمل من النقطة التي توقف عندها الإرسال.

بالطبقة السادسة - طبقة العرض (Presentation):

تحدد هذه الطبقة كيفية تهيئة البيانات، وعرضها، وتغييرها، وفتح رموزها المشفرة Codes عن طريق الترجمة من صيغة التطبيق إلى صيغة الشبكة، وبالعكس، تمتاز هذه الطبقة بمهمة تهيئة المعلومات التي ترسلها طبقة التطبيقات المعلومات النظام بحيث يمكن أن تقرأها طبقة التطبيقات بالنظام الأخر. كما وتقوم هذه الطبقة أيضا بضغط البيانات لتقليل عدد البتات التي يجب نقلها بالإضافة إلى تشفير الرسائل. لكي نفهم المبدأ بشكل أفضل، لنفرض أن لدينا شخصين يتحدثان لغتين مختلفتين، الطريقة الوحيدة لكي يفهم كلاهما الآخر هي بجعل شخص آخر يقوم بالترجمة، تقوم طبقة العرض أو التقديم بوظيفة المترجم للأجهزة التي تحتاج للاتصال عبر الشبكة. تحدد معايير الطبقة السادسة أيضاً كيف يتم عرض الصور الرسومية، من هذه المعايير:

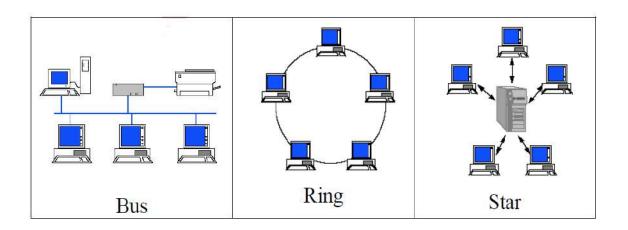

- ۱ PICT تنسيق صور مستخدم لنقل رسوم QuickDraw بين البرامج على نظام التشغيل MAC.
 - TIFF- ۲ (تنسيق ملف الصور المعلمة) تنسيق من أجل الصور النقطية عالية الدقة.
- **JPEG- ۳** (تنسيق مجموعة خبراء التصوير المتحدين) تنسيق رسومي يستخدم غالباً لضغط الصور من صور ورسوم معقدة.
- عود معايير الطبقة السادسة الأخرى عرض الصوت والصور المتحركة، حيث يوجد ضمن هذه المعايير ما يلي:
 - MIDI (الواجهة الرقمية للأدوات الموسيقية): من أجل الموسيقي الرقمية.
- •MPEG (تنسيق مجموعة خبراء الصور المتحركة): معيار لضغط وترميز الفيديو المتحرك من أجل الأقراص المضغوطة CD و التخزين الرقمي.
- •QuickTime معيار يعالج الصوت و الفيديو من أجل البرامج على كل من أنظمة التشغيل MAC و أجهزة الحواسيب الشخصية.

الطبقة السابعة - طبقة التطبيقات (Applications):

وهي الطبقة الأقرب للمستخدم والتي يتحكم فيها المستخدم مباشرة وتقدم خدمات الشبكة لتطبيقات المستخدم، إنها تختلف عن الطبقات الأخرى في أنها لا تقدم خدمات لأي طبقة أخرى بل فقط للتطبيقات الواقعة خارج النموذج OSI. الأمثلة عن هكذا تطبيقات هي برامج أوراق العمل وبرامج معالجة النصوص و برامج موظفي الصندوق في المصارف، تدعم هذه الطبقة عدة برامج منها برامج نقل الملفات و برامج قواعد البيانات وبرامج البريد الإلكتروني. من البروتوكولات التي تعمل في هذه الطبقة: Telnet و TTP و FTP و FTP و TFTP و TFTP.

يقوم الحاسوب A بتحضير البيانات لإرسالها إلى الحاسوب B المستقبل حيث تصل البيانات بالطبقة المكافئة لها وذلك لأن المستويات تتحدث بنفس اللغة.

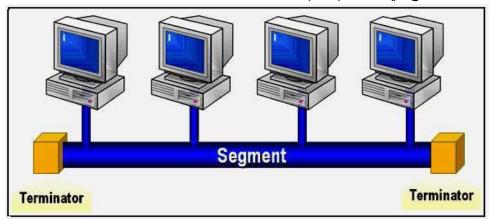
- ١ يقوم الحاسوب A ببدأ الإرسال في القمة ونزولاً باتجاه الطبقة الفيزيائية وعندما تمر الرزمة المعلوماتية من مستوى إلى أخر يقوم كل مستوى بإضافة معلومات العنونة والتنسيق الخاصة به.
 - ٢ عندما تمر الرزمة عبر وسط النقل يتم الاتصال بين الحاسوبين عن طريق هذه الطبقة.
 - $^{\prime\prime}$ تقوم الطبقة الفيزيائية في الحاسوب $^{\prime\prime}$ المستقبل بتحويل الدفق التسلسلي من البتات إلى رزم.
 - ٤ تقوم كل طبقة بأخذ معلومات العنونة والتنسيق التي قامت بإضافتها سابقاً.


شكل (٤ - ٢) يوضح تسميات الحزم المعلوماتية المارة خلال طبقات OSI السبعة

Networks Topology طبوغرافية الشبكات (٢ – ٢)

نقصد بطبوغرافية الشبكات هي الكيفية التي يتم بها توصيل الحواسيب الآلية والأسلاك والأجهزة والمكونات المادية الأخرى وربطها مع بعضها البعض لتكوين شبكة ، ترتبط طبوغرافية الشبكة مباشرة بنوع السلك (الكيبل) المستخدم في تصميم وإنشاء الشبكة لذلك عند إنشاء أي شبكة محلية يجب الأخذ بنظر الاعتبار نوع أسلاك التوصيل، نوع بطاقة الشبكة والمقابس الخاصة للأسلاك. من الممكن إنشاء شبكات محلية بطوبوغرافيات مختلفة لكل شبكة محلية وربطها بواسطة أجهزة ربط شبكي مثل الجسور والمحولات والموجهات حيث تقوم هذه الأجهزة بزيادة كفاءة الشبكة المحلية من حيث إعادة تكبير الإشارة الكهربائية في الشبكة المحلية وتتظيم تراسل الإشارات بين الحواسيب المختلفة في الشبكة وتعتبر الموجهات بتضخيم الإشارة المماجهزة الربط الشبكي المستخدمة في الشبكات المحلية حالياً حيث تقوم هذه الموجهات بتضخيم الإشارة وتمنع ضعفها وضياعها في الأسلاك إضافة إلى تنظيم مرورها في الأجزاء المختلفة في الشبكة ومن الطوبوغرافيات المستخدمة في الربط الشبكي في الشبكات المحلية هي:

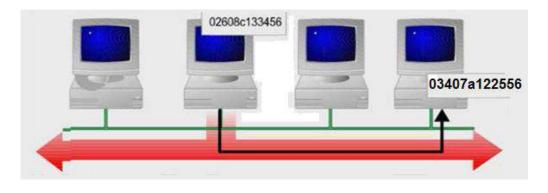
- الطبوغرافية الناقلة (الخطية) Bus Topology
 - الطبوغرافية النجمية Star Topology
 - الطبوغرافية الحلقية Ring Topology


التي سوف نتطرق لها بالتفصيل لاحقاً مع تقديم تمارين تطبيقية لكل نوع من أنواع الطوبوغرافيات أعلاه توضح آلية الربط الشبكي لهذه الطوبوغرافيات في الشبكات المحلية بأكثر من حالة ربط مادي وتعريف برمجي لبطاقة الشبكة ولأكثر مسن نظام تشبغيلي للحاسوب مثال نظام Windows Xp ونظام Windows Xp ونظام 7

شكل (٤ - ٣) يوضح الطوبوغرافيات المستخدمة في الربط الشبكي للشبكات المحلية

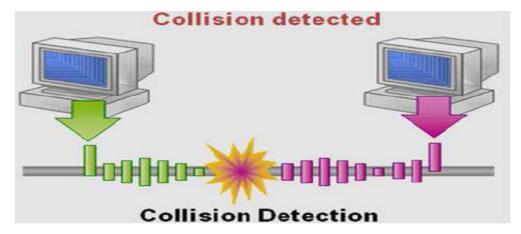
BUS الناقل النطاق المحلي النوع الناقل ± 4

يعتبر تصميم الشبكة المحلية الناقلة أو الخطية Bus من أبسط الطوبوغرافيات المستخدمة في الربط الشبكي، حيث يتم في هذا الربط توصيل وربط كافة الحواسيب الآلية على خط نقل واحد يعرف بالعمود الفقري للشبكة، ويعرف الجزء الرابط من هذا الخط والذي يربط كل جهاز حاسوب مع الجهاز الذي يليه بالقطعة Segment كما هو موضح في الشكل (٤-٤).



شكل ($\xi = \xi$) يوضح الطبوغرافية الناقلة Bus للربط الشبكي في الشبكات المحلية

وتعتمد فكرة هذا النوع من التصميم الشبكي على ثلاثة أساسيات هي:


- ۱ -إرسال الإشارة Signal Transmission
 - ۲ -ارتداد الإشارة Signal Bounce
 - The Terminator منهي الإشارة

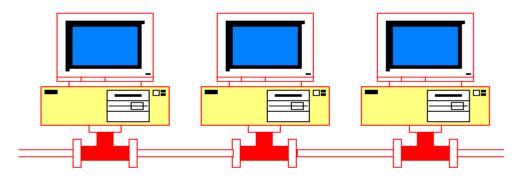
وفي هذا النوع من الشبكات ترسل البيانات على شكل إشارات كهربائية إلى كافة الحواسيب الموصلة بالشبكة، ويتم قبول المعلومات من الحاسوب الذي عنوانه ملائم مع العنوان المشفر داخل الإشارة الأصلية المرسلة خلال الشبكة، الشكل (٤-٥) يوضح كيفية إرسال الإشارة خلال هذه الشبكة.

Bus أ يوضح نقل الإشارة خلال الناقل الرئيس في الطبوغرافية الناقلة الن

ولابد الإشارة عزيزي الطالب أن لهذه الطبوغرافية مساوئ فنية يمكن ملاحظتها من خلال استخدام أكثر من جهاز حاسوب السلك الناقل الرئيس للشبكة ، حيث عند قيام جهازي حاسوب بإرسال بيانات في نفس الوقت فأن ذلك سوف يؤدي إلى عملية تصادم Collision نتيجة لإرسال الجهازين للبيانات في نفس الوقت ، لذا يجب على كل جهاز حاسوب انتظار دوره في إرسال البيانات في الشبكة، وبالتالي فأنه كلما زاد عدد الأجهزة في الشبكة كلما طال وقت الانتظار ووصول الدور للإرسال واستخدام الناقل الرئيس للشبكة في إرسال البيانات وهذا يؤدي بدوره إلى زيادة بطء الشبكة، الشكل (٤-٦) يوضح حالة حصول التصادم.

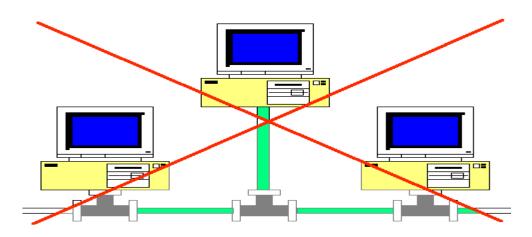
 ${
m Bus}$ شكل (ء - ٦) يوضح حالة التصادم في الناقل الرئيسي للشبكة الناقلة

أما العوامل التي تؤثر في إداء الشبكة الناقلة Bus فيمكن إجمالها بما يلي:

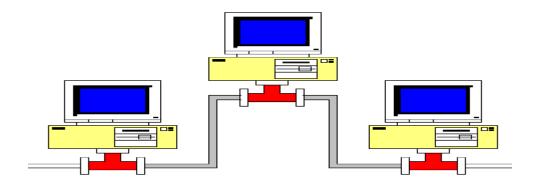

- ١ الإمكانيات والخدمات التي توفرها المكونات المادية للحواسيب المكونة للشبكة.
 - ٢ عدد أجهزة الحواسيب المرتبطة بالشبكة.
 - ٣ -نوعية البرامج التشغيلية والخدمية العاملة في أجهزة الحواسيب في الشبكة.
 - ٤ المسافة بين الأجهزة المتصلة بالشبكة.
 - م -سرعة نقل البيانات في الشبكة مقاسة (bps) بالبت في الثانية.

كما لابد الإشارة عزيزي الطالب إلى أنه عندما ترسل إشارة البيانات في الشبكة فإنها تنتقل من بداية السلك الهايته، وإذا لم يتم مقاطعة هذه الإشارة فإنها ستبقى ترتد ذهابا وإيابا على طول السلك الناقل الرئيس وستمنع أجهزة الحواسيب الأخرى من إرسال إشارتها خلال السلك الناقل الرئيس في الشبكة، لهذا يجب إيقاف هذه الإشارة بعد وصولها إلى العنوان المطلوب الممثل بالجهاز الذي أرسلت إليه البيانات، ولإيقاف الإشارة ومنعها من الارتداد، يستخدم مكون من مكونات الشبكة يسمى منهي الإشارة Terminator يتم وضعه عند كل طرف من أطراف السلك ويوصل بكل جهاز حاسوب متصل بالشبكة.

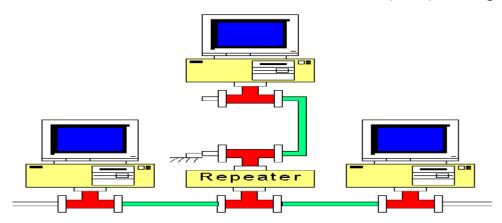
(٤ - ٤ - ١) ملاحظات عملية مهمة عن ربط النوع الناقل BUS


سنقدم لك عزيزي الطالب في هذه الفقرة أهم الملاحظات الأساسية الواجب معرفتها للمحافظة على المواصفات الفنية لهذا النوع من الربط.

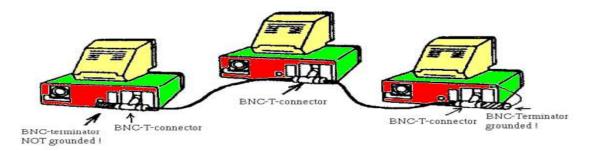
ا -احرص عزيزي الطالب أن يكون الربط مباشراً بين الوصلة BNC - T وبين بطاقة الشبكة ذات وصلة الربط BNC مباشراً دون استعمال موصل للتوصيل كما في الشكل ($V-\xi$):


شكل (2 – 4) يوضح حالة الربط المباشر بين الوصلة 2 وبين بطاقة الشبكة

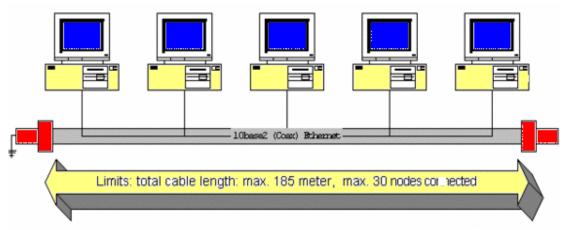
ولا تستعمل عزيزي الطالب طريقة الربط كما في الشكل (٤-٨) لأنها لا تتناسب فنياً وسوف تتسبب بمشاكل في الربط وقد لا يحدث ربط شبكي أصلاً:


شكل (٤ – ٨) يوضح الحالة الخطأ في الربط بين الوصلة ${f T}$ وبين بطاقة الشبكة

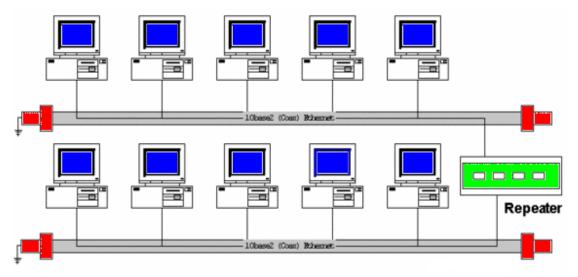
أما إذا كان لزاماً عليك عزيزي الطالب وضع الحاسوب الوسط بنفس هذا الموقع مع تجنب الربط غير المباشر مع المقبس T، فمن الممكن اللجوء إلى طريقة الربط الموضحة بالشكل ($^{9-9}$) وهذا سيحقق الربط الشبكي على شرط أن كيبل التوصيل الذي يوصل المقبس T للحاسوب في الوسط ذو طول لا يتجاوز طول الكيبل الناقل الرئيس:


شكل (4 – 9) يوضح الحالة الصحيحة الثانية في الربط بين الوصلة ${f T}$ وبين بطاقة الشبكة

أو بإمكانك عزيزي الطالب اللجوء إلى استعمال جهاز المكرر Repeater في ربط الحاسبة الوسط كما موضح بالشكل (٤-١٠).

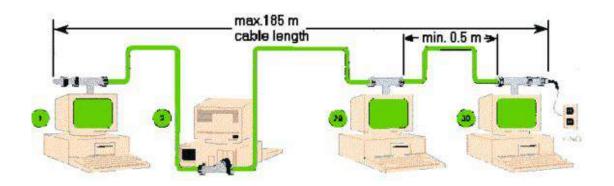

شكل (٤ - ١٠) يوضح كيفية ربط Repeater بين بطاقة الشبكة والناقل الرئيس

وختاماً لهذه النقطة من الملاحظات، احرص عزيزي الطالب أن يكون الربط لهذا النوع الناقل بالشكل الفني الذي يمثل الذي يمثل طريقة الربط النموذجية التي تحقق أعلى المواصفات للربط الشبكي لهذا النوع.

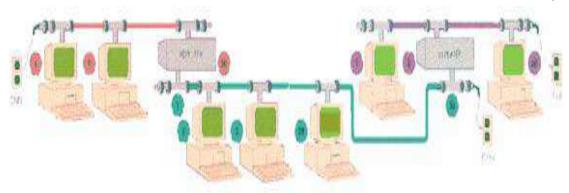

شكل (٤ - ١١) يوضح طريقة الربط النموذجية لبطاقات الشبكة مع الناقل الرئيس

Y -احرص عزيزي الطالب وأنت تصمم وتربط عملياً أجهزة حواسيب بشكل شبكة نوع الناقل BUS من النوع 10Base2، أن يكون أقصى عدد للحواسيب المربوطة بهذا الناقل الرئيس أن لا يتجاوز ٣٠ جهازاً على مدى ١٨٥ متراً وليس ٢٠٠ متراً كما في الشكل (٢-٢).

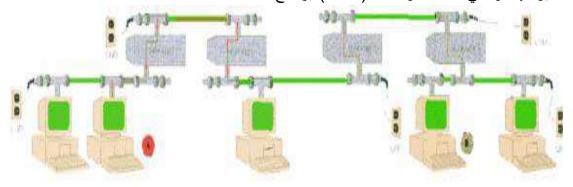
شكل (٤ - ١٢) يوضح أن عدد النقاط لا يتجاوز ٣٠ نقطة على مدى ١٨٥ مترا للناقل الرئيس


أما أذا كان عدد الحواسيب المراد ربطهم شبكياً بواسطة ناقل BUS نوع 10Base2 أكثر من ٣٠ جهازاً أو إذا كان طول الناقل أكثر من ١٨٥ متراً، فأنه بإمكانك عزيزي الطالب توسيع نطاق الشبكة وذلك بربط ناقل أخر من نفس النوع بالناقل الرئيس بواسطة جهاز المكرر Repeater واحرص أن يكون طرفا النواقل مربوطين بشكل فني كما هو موضح بالشكل (١٣-٤).

شكل (٤ - ١٣) يوضح كيفية استخدام الـ Repeater في الربط في حالة أن عدد النقاط


يتجاوز ٣٠ نقطة أو إذا كان طول الناقل الرئيس أكثر من ١٨٥ مترا

واحرص عزيزي الطالب أن تكون المسافة بين جهاز حاسوب وآخر على الناقل الرئيس بحدود 0.5 متر كما هو واضح بالشكل (٤-٤).


شكل (٤ ـ ٤) يوضح مقدار المسافة بين جهاز حاسوب وآخر على الناقل الرئيس

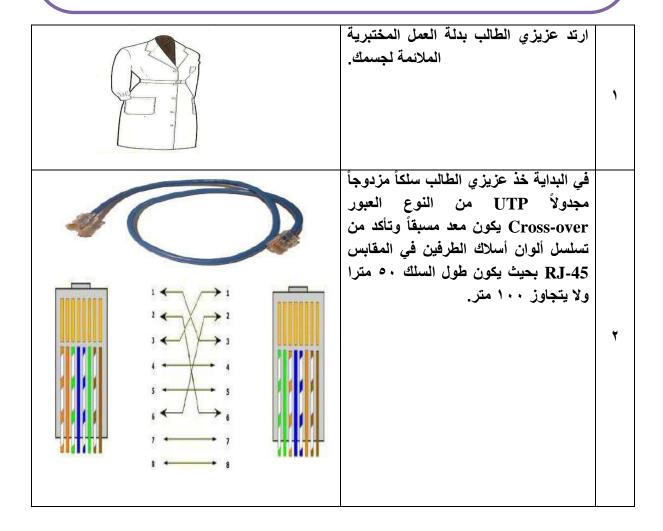
وبإمكانك تطبيق الربط التصميمي المبين في الشكل (٤-١٥) باستخدام جهازين مكررين لغرض تكبير الإشارة ومنعها من الضعف.

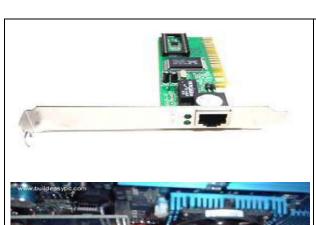
شكل (٤ - ١٥) يوضح كيفية استخدام وربط جهازين مكررين لغرض تكبير الإشارة

وبإمكانك كذلك عزيزي الطالب تطبيق نظرية 7-3-6 التي تنص على أنه في الربط الناقل Repeaters عدد يمكن تجزئة مجال الناقل الرئيس للشبكة إلى خمسة قطع للنقل مربوطين بأجهزة عدم ضعف أربعة بحيث تربط أجهزة حواسيب لا تزيد عن ثلاثة في كل قطعة ربط، وللزيادة في عدم ضعف الإشارة فأنه تم الاتفاق عالمياً بأن يراعى عدم ربط قطعتين من القطع الناقلة بأي جهاز حاسوب وذلك لزيادة تكبير الإشارة في الشبكة، والشكل (3-1) يوضح ذلك:

شكل (٤- ١٦) يوضح كيفية تطبيق نظرية الربط ٣-٤-٥ في الربط الشبكي الناقل Bus

رقم التمرين: (٤ – ١) الزمن المخصص: ٣ ساعات


اسم التمرين: التدريب على دراسة تأثير أطوال كيبلات الربط في نقل الإشارة في الشبكة مكان التنفيذ: مختبر شبكات الحاسوب


أولا: الأهداف التعليمية:

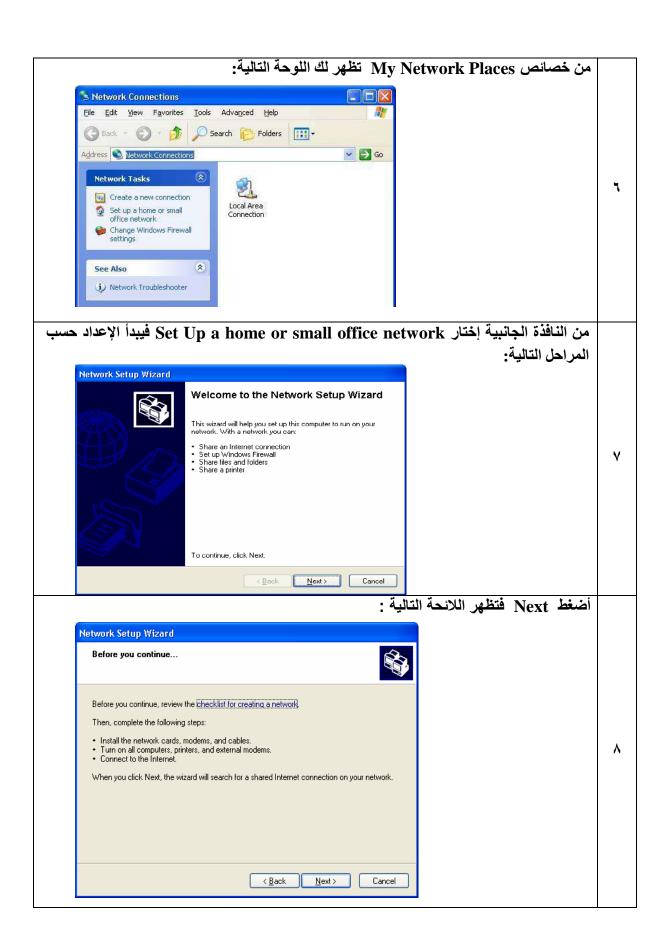
ليتعرف الطالب على تأثير أطوال موصلات الربط في نقل الإشارة في الشبكة ثانيا: التسهيلات التعليمية:

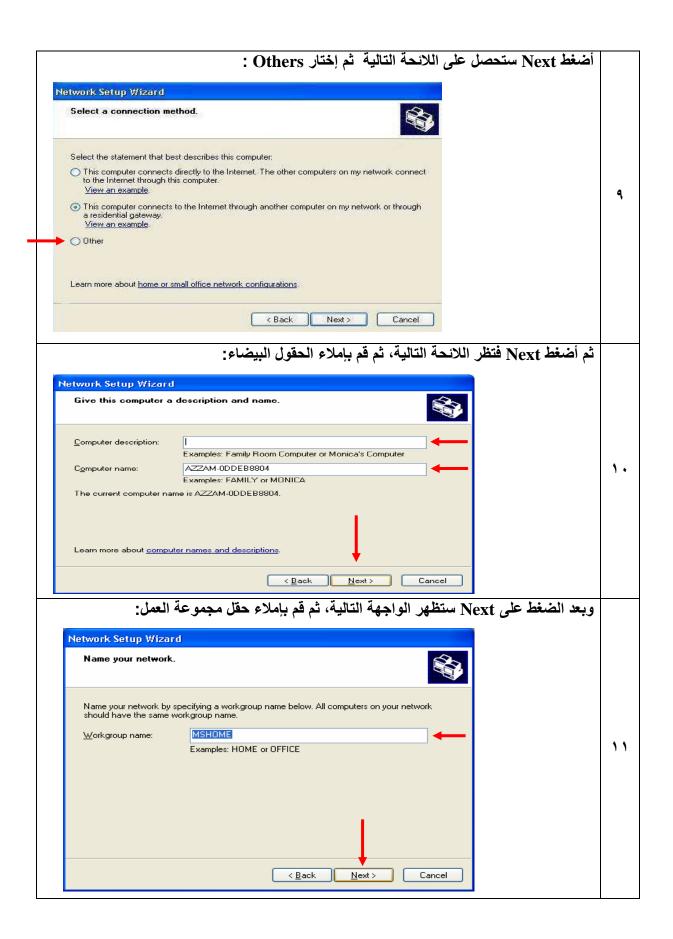
- ١ ـ موصلات ربط مجدولة نوع العبور بأطوال مختلفة (٥٠ متراً _ ١٠٠ متر _ ٢٥٠ متراً)
 - 2- بطاقة شبكة نوع PCI (كارت شبكة LAN) عدد اثنان
 - ٣ جهاز حاسوب (عدد اثنان)
 - ٤ ـ دفتر ملاحظات

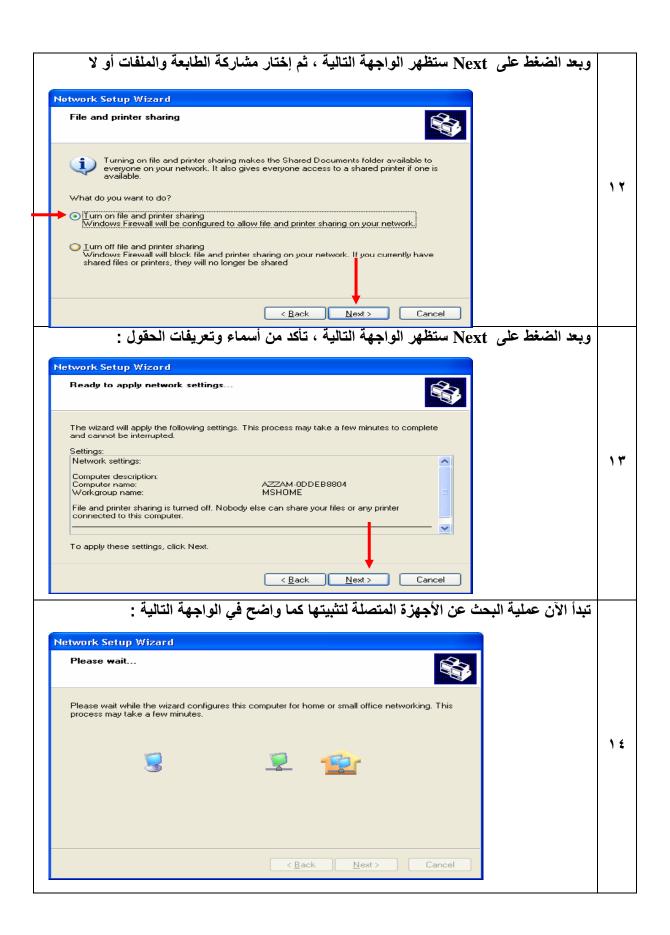
ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات

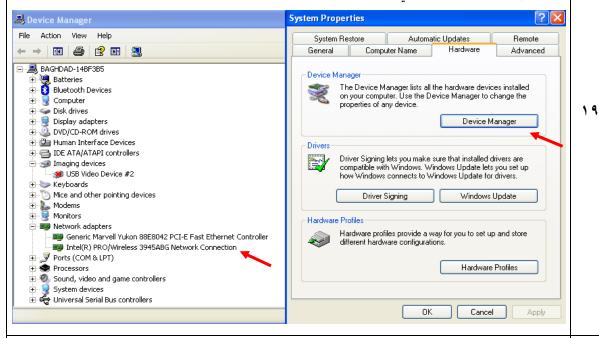
قم بإحضار وصلة للربط الشبكي نوع PCI ووضعه في الفتحة المخصصة له في وتثبيته في اللوحة الأم في جهاز الحاسوب بعد فتح علبة النظام، بعد الانتهاء من تثبيت الوصلة، اغلق علبة النظام لجهاز الحاسوب وضعها في المكان المخصص لها، كرر عزيزي الطالب هذه العملية بتثبيت وصلة ربط شبكة من نفس النوع والماركة التجارية وتثبيتها في جهاز الحاسوب الأخر. وبعد الانتهاء من تركيب الوصلتين أي الجهازين، ادخل سلك التوصيل الشبكي من نوع العبور في فتحة الربط الشبكي الموجودة في الوصلة وبالشكل الذي يظهر ربط جهازي الحاسوب.

٤


بعد تشغيل الجهازين ستظهر لك هذه الأيقونة بجانب الساعة تشير أن الاتصال تم بنجاح.




من سطح المكتب اختار My Network Places ويمكن إظهارها في حال لم تكن موجودة من خصائص العرض حسب الشكل التالى:



يمكنك عزيزي الطالب من إعداد جهاز الحاسوب الثاني وذلك بإدخال الفلوبي دسك الذي قمت بتحضيره في الجهاز الأول وتشغيل الملف netsetup.

بعدها إبدأ نفس الإجراءات السابقة وكرر العمليات السابقة وبعدها قم بإعادة تشغيل جهاز الحاسوب.

بعد الإنتهاء من إعداد تعريف وصلات الربط الشبكي ولغرض التأكد من هذه الوصلة قد تعرفت بصورة صحيحة في جهاز الحاسوب، إجعل مؤشر الفأرة على إقونة حاسوبي الموجودة على سطح المكتب أضغط على الزراليمين للفأرة ستظهر الواجهة System Properties أدناه وعند إختيار Hardware ومن ثم Device Maneger نرى لائحة بكل المكونات المادية المربوطة بالحاسوب وبضمنها وصلة الربط الشبكي.

بعد التأكد من تحقق الربط الشبكي بين الحاسبتين ، قم عزيزي الطالب من إجراء عملية نقل وتبادل الملفات بين الجهازين وسجل حسب إستطاعتك الزمن المستغرق لنقل ملف معين بين الجهازين.

بعد ذلك قم عزيزي الطالب بإعادة الربط الشبكي بين الجهازين ولكن باستخدام كيبل ربط مجدول نوع العبور بطول ١٠٠ متر، فقط قم عزيزي الطالب بإبدال كيبل الربط فقط دون الحاجة الى اعادة خطوات تركيب وتعريف كارت الشبكة لأنه أصلاً تم تعريفه مسبقاً ، بعد إستخدام الكيبل الجديد الذي طوله ١٠٠ متر ، قم بملاحظة الربط الشبكي هل تحقق ؟ أم لا، فإذا تحقق الربط من خلال عمل إقونة الشبكة الموجودة في شريط الأدوات في أسفل واجهة سطح المكتب فقم بإجراء عملية نقل نفس الملف الذي تم نقله في الخطوة أعلاه والذي تم تسجيل الوقت المستغرق لنقله ، فإذا تمت عملية النقل الجديدة فقم بتسجيل الوقت المستغرق السابق فماذا ستجد ؟ أكيد ستجد أن الزمن الجديد سيكون أطول من السابق .

بعد ذلك قم عزيزى الطالب بإعادة الربط الشبكي بين الجهازين ولكن بإستخدام كيبل ربط مجدول نوع العبور بطول ٢٥٠ متر أو أكثر من ذلك، فقط قم عزيزى الطالب بإبدال كيبل الربط فقط دون الحاجة الى اعادة خطوات تركيب وتعريف كارت الشبكة لأنه أصلاً تم تعريفه مسبقاً، بعد إستخدام الكيبل الجديد الذي طوله ٢٥٠ متر أو أكثر، قم بملاحظة الربط الشبكي هل تحقق ؟ أم لا، فإذا تحقق الربط من خلال عمل إقونة الشبكة الموجودة في شريط الأدوات في أسفل واجهة سطح المكتب، ولكن أكيد ستجد عزيزى الطالب أنه لايوجد ربط شبكي بين الجهازين بسبب طول السلك الرابط حيث أن مواصفاته الفنية بهذا الطول لاتتناسب مع قواعد الربط الشبكي المخصص، حيث أن طول الكيبل لهذا النوع من الربط وغيره يجب أن لايكون عشوائياً بل يكون وفق مواصفات معينة وهذا مايجب أن يحرص عليه المهندس والفنى المختص عند تصميمه لأنواع الشبكات.

المناقشة

7 4

- لماذا تم إستخدام سلك ربط شبكي UTP من نوع العبور Cross-over في ربط الجهازين؟ ولماذا لم يستخدم النوع المباشر؟
 - هل يمكن ربط جهازى الحاسوب شبكياً بطريقة أخرى؟ ماهى؟
 - إذا كان طول السلك الرابط للشبكة أكثر من اللازم ؟ ماذا سيحدث؟
- لماذا تم إستخدام الوصلة الخاصة بالشبكة (كارت الشبكة) من النوع PCI ؟ هل من الممكن إستخدام (كارت شبكة) من النوع ISA ? وما الفرق بين الأثنين؟
 - كيف يمكن معرفة أن وصلة ربط الشبكة معرفة في الحاسوب الآلي؟
 - هل ممكن ربط أكثر من وصلة ربط شبكة في جهاز حاسوب واحد؟
- ناقش تأثير طول السلك الرابط في تحقق الربط الشبكي بين الجهازين؟ وتاثير طول هذا السلك في سرعة نقل المعلومات بين الجهازين؟
- في حالة كون المسافة بين جهازي الحاسوب أكثر من ١٠٠ أو ١٢٠ متراً ماذا تقترح عمله لإجراء الربط الشبكي بين الجهازين ؟ ناقش ذلك.
- إذا تم إستخدام كيبل محورى بدلاً من الكيبل المجدول؟ هل لطول الكيبل تأثير بارز في تحقق الربط الشبكي؟ وهل عملية النقل ستكون أسرع؟ وهل المسافة ستكون أطول؟ ناقش هذه الحالات

استمارة قائمة الفحص				
الجهة الفاحصة:				
اسم الطالب:	الب: المرحلة:			
التخصص:				
اسم التمرين:				
الرقم	الخطوات	الدرجة القياسية	درجة الأداء	الملاحظات
١ ارتداء بدلة الع	لة العمل	% 5		
عن تعريف و	ام التشغيل Windows ومراحل الكشف ف وصلة الربط الشبكي حسب طول لرابط والتحقق من حدوث الشبكة.	%10		
المأخوذة وتس	بدال الموصل الرابط حسب الأطوال وتسجيل الزمن المستغرق لنقل الملف ازين وغيرها من عمليات التحقق من كة	%10		
ع المناقشة		%1.		
ه الزمن المخصص	خصص	%00		
المجموع				
اسم القاحص	م الفاحص			

التاريخ

IP Addressing in LAN العنونة في الشبكات المحلية (٤- ٤- ٢) العنونة في الشبكات المحلية

تُعدُ العنونة من الأمور البرمجية المهمة التي من الواجب القيام بها بعد عملية تعرف المكونات المادية للشبكة والعنونة تشبه عملياً عنونة المنازل حيث أن بعد عملية إقامة وتشييد المنزل لابد من جعل لهذا المنزل عنوان معروف ينسب إلى أهل المنزل لكي يتم من خلال هذا العنوان إرسال كافة المعلومات والرسائل التي تخص أهل هذا المنزل، هذه الحالة تنطبق بعينها في عنونة الشبكة المحلية، فلابد الإشارة عزيزي الطالب إلى النطرق بأن لكل جهاز حاسوب في الشبكة المحلية يجب أن ينسب إليه عنوانين أحدهما يعرف بالعنوان الفيزيائي وهو عنوان عائد إلى وصلة الربط الشبكي (LAN Card) وهذا العنوان لا يتم تغييره وتبديله وإنما عنوان متكون من ٤٨ بت أي (Hexadecimal Digits) تكون أول ٢٤ بت من جهة اليمين جهة اليسار عائدة لعنوان الشركة المصنعة لوصلة الربط الشبكي أما ٢٤ بت الباقية وهي على جهة اليمين فأنها تعود إلى العنوان الخاص بهذه الوصلة فقط دون أن يتكرر في الوصلات الأخرى وهذه العنونة تشبه عنوان رقم الهاتف الخلوي حيث يتكون هذا العنوان من جزء عائد إلى عنوان شركة الاتصال والجزء الآخر عائد إلى الرقم الخاص بالشخص المستخدم (وهذا مثال لعنوان فيزيائي AC:2B:CC:D0:A1:4C).

أما العنوان الآخر الذي من المفروض أن يمتلكه كل جهاز حاسوب فهو العنوان IP الذي يمكن تحديده برمجياً وتغييره من قبل نظام التشغيل في جهاز الحاسوب، حيث يتكون IP Address من أربع خانات من الأرقام كل خانة تحتوي على رقم من والي ٢٥٥ وبالتالي يكون مجموعهم ٢٥٦ وكل خانة من هذه الخانات تسمىOctet والذي يتكون من 8bit كل جهاز حاسوب متصل بالشبكة يجب أن يكون لديه IP هذه الخانات تسمىHay الأجهزة على الشبكة وهناك نوعين من الـ IP أحدهم يستخدم في الشبكات الداخلية والمحلية مثل العنسوان هذا العنسوان هذا العنسوان هذا العنسوان هيزا به 192.168.0.1 ووضع أرقام متسلسلة في الخانة الأخيرة Octet والنوع الأخر من الـ IP فيسمى بـ Internet IP أو Real IP وهو المستخدم عند الربط بشبكة الأنترنت وكان في الغالم ولذلك فأن هذا العنوان سوف يكون عنوان عالمي لجهاز الحاسوب.

أما عن مصطلح أو العنوان Mask الذي يكون عادة مرافقاً للعنوان IP لجهاز الحاسوب، فعند وضع IP مثلاً 192.168.0.15 وبمجرد الانتهاء من وضعه في الخانة المخصصة له نأخذ تلقائياً الرقم Subnet Mask للعنوان أعلاه، ولابد عزيزي الطالب من الإشارة إلى أن العنوان IP يقسم إلى عدة فئات عنونة اعتمادا على عدد الخانات bits المخصصة للشبكة أو للحواسيب ومن هذه الفئات:

Class A

وهو العنوان الذي يكون الرقم الأول من جهة اليسار بين (· إلى ١٢٦) وعندها يكون العنوان (· الله Subnet Mask = 255.0.0.0).

Class B

وهو العنوان الذي يكون الرقم الأول من جهة اليسار بين (١٢٨ إلى ١٩١) وعندها يكون العنوان (Subnet Mask = 255.255.0.0)

Class C

أما العنوان 192.168.0.15 فهو من Class C فهو من 192.168.0.15 سيكون كالمنافق المضيف (المستخدم لجهاز الحاسوب) في هذه الشبكة هو ١٠.

ومن أبرز استخدامات العنوان Subnet Mask هي في العنونة الفرعية Subnet like الشبكات وهو موضوع معقد بعض الشيء ولامجال لذكره هنا. ومن الملاحظ عزيزي الطالب أن هناك حزمة من العناوين لم تستخدم في عنونة أجهزة الحاسوب وهي جميع العناوين المحصورة بين 127.0.0.0 حتى العناوين لم تستخدم في مخصصة لأغراض متعددة منها لأغراض التجارب وكذلك بعضها يكون محجوز لأجهزة شبكات معينة. ولكي تكون عزيزي الطالب على معرفة بكيفية إيجاد العنوان IP لجهازك وكذلك بالنسبة إلى العنوان Subnet Mask الموائم لابد لنا من أخذ مثال تطبيقي على ذلك.

رقم التمرين: (٤ – ٢) الزمن المخصص: ٣ ساعات

اسم التمرين: التدريب على معرفة كيفية إعداد عنوان IP وعنوان Subnet Mask

مكان التنفيذ: مختبر شبكات الحاسوب

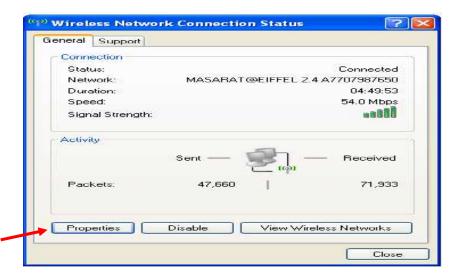
أولا: الأهداف التعليمية:

إن يكون الطالب قادرا على إنشاء عنوان IP لجهاز حاسوبه في الشبكة

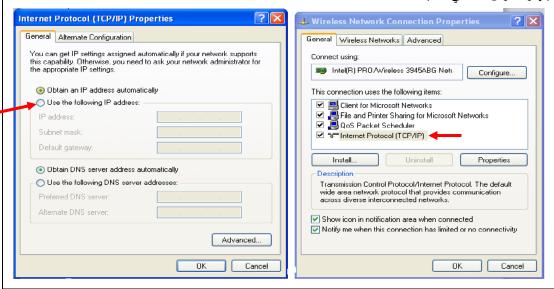
ثانيا: التسهيلات التعليمية:

١ - أجهزة حاسوب مرتبطة بشبكة (أقل عدد هو جهازين) ذات أنظمة تشغيل ومعرفة شبكياً

٢ ـ دفتر ملاحظات


ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات

ارتد عزيزي الطالب بدلة العمل المختبرية الملائمة لجسمك.


بعد التأكد عزيزي الطالب من أن أجهزة الحواسيب (ليكن جهازي حاسوب) مرتبطة شبكياً من خلال المكونات المادية للربط الشبكي والنظام البرمجي التشغيلي للحواسيب مثل نظام Windows Xp، بعد تشغيل النظام نلاحظ في أسفل الجهة اليمني في Toolbar الأزرق لواجهة النظام وجود ثلاثة أنواع من الشبكات اثنان من النوع المحلية السلكية وشبكة واحدة من النوع اللاسلكي، كما نلاحظ أن الشبكة السلكية ذات العلامة X هي شبكة غير عاملة وغير فعالة بسبب خلل مادي Hardware مثل حدوث خلل في السلك الرابط الشبكي أو خلل في وصلة الربط الشبكي أو خلل في وصلة الربط المسلكية الأخرى فهي عاملة وفعالة وكذلك الحال بالنسبة للشبكة اللاسلكية، ولكل من هذه الشبكات عزيزي الطالب يجب أن يكون هناك عنوان IP يعرف جهاز الحاسوب في هذه الشبكة.

٣ لغرض معرفة أو تحديد العنوان IP لإحدى الشبكات العاملة نضع سهم الفارة على إحدى هاتين الشبكتين
 و و نضغط الزر الأيمن للفارة و نختار و ننفذ Status من اللائحة فتظهر لنا الواجهة التالية:

بعد الضغط على Properties في الواجهة أعلاه تظهر الواجهة اليمنى أدناه ، ثم نضغط على Internet في المواجهة السفلى اليسرى ، ثم نختار الاختيار المؤشر بالسهم الأحمر وندخل العنوان الـIP المناسب وعنوان Subnet الموائم له في الخانات المخصصة ثم تضغط موافق OK فيصبح الجهاز عنوان IP في الشبكة.

- المناقشة
- ماهى الفائدة من عنونة جهاز الحاسوب في الشبكة؟
- هل لكل وصلة ربط شبكي LAN Card عنوان IP خاص بها؟
- ما هي الفنات المستخدمة في عنونة الشبكات Addressing Classes؟ أذكرها مع تحديد مدى عناوين كل منها.

			and the same of th	
		(استمارة قائمة الفحص	
			الفاحصة:	الجهة
المرحلة:			اسم الد	
			ص:	التخص
			نمرین:	اسم الذ
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم
		% 0	ارتداء بدلة العمل	١
		%10	تشغيل نظام التشغيل Windows ومراحل اختيار الشبكة لغرض العنونة	۲
		%10	مراحل تثبيت عنوان IP والعنوان Subnet Mask لجهاز الحاسوب	٣
		%1.	المناقشة	ŧ
		% 5	الزمن المخصص	٥
			٤٠	المجمو
	I	التوقيع	فاحص	اسم الذ
		I	3	التاريخ

الزمن المخصص: ٣ ساعات

رقم التمرين: (٤ -٣)

اسم التمرين: التدريب على معرفة كيفية ربط شبكة محلية من النوع الناقل Bus مكان التنفيذ: مختبر شبكات الحاسوب

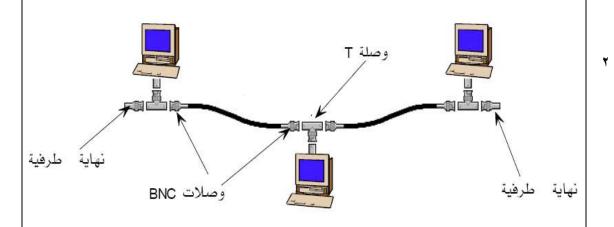
أولا: الأهداف التعليمية:

إن يكون الطالب قادراً على إنشاء وربط شبكة محلية من النوع الناقل الخطي ثانيا: التسهيلات التعليمية:

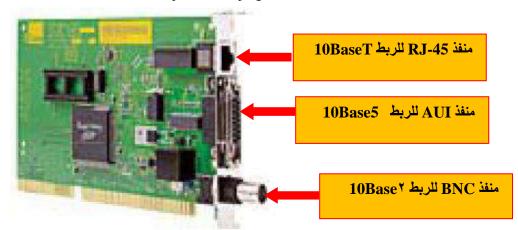
۱ ـ أجهزة حاسوب (أقل عدد هو جهازين) ۲ ـ موصل محوري Coaxial

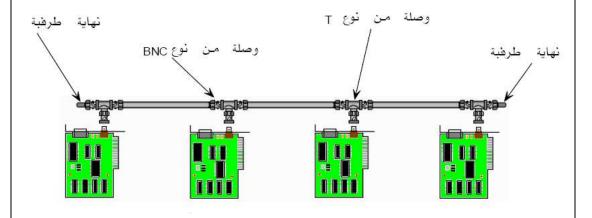
٣- بطاقة شبكة بقدر عدد أجهزة الحاسوب (تحتوي منفذ ربط مقبس BNC)

٤ - مقابس ربط (فيش BNC وفيش من نوع T وفيش للنهايات الطرفية)


عدد يدوية لتأسيس موصلات الربط في الشبكة
 دفتر ملاحظات

ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات

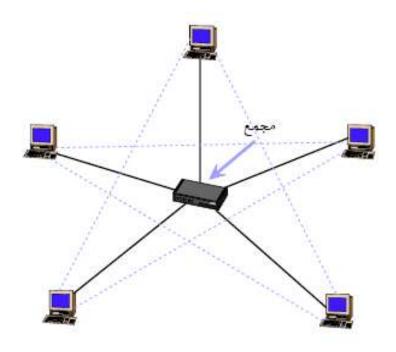

ارتد عزيزي الطالب بدلة العمل المختبرية الملائمة لجسمك.


1

أنظر عزيزي الطالب إلى التصميم أدناه والذي يمثل تصميم لشبكة محلية بسيطة تتكون من عدد محدود من الحواسيب (ليكن عدد الحواسيب اثنين كأقل عدد)، المراد ربط هذه الحواسيب شبكياً بهيئة ناقل Bus وباستخدام السلك المحوري Coaxial Cable على أن لا يزيد طول السلك الناقل الرئيس عن ٢٠٠ متر في حالة السلك رفيع السمك 10Base2، وأن لا يقل البعد بين أي حاسوبين عن نصف متر.

لغرض تطبيق هذا التصميم عملياً، نأخذ وصلات للربط الشبكي LAN Card تحتوي على فتحة للربط الشبكي من النوع BNC كما هو في الشكل أدناه، ثم قم عزيزي الطالب بتثبيتها في الحواسيب في الفتحات الخاصة بها في اللوحات الأم ومن ثم قم بربطها مع بعضها البعض بالأسلاك المحورية بعد تأسيسها بالمقابس وحسب الأطوال والمواصفات الفنية المحددة كما هو واضح في الشكل التالى:

بعد الانتهاء من ربط المكونات المادية، قم بتشغيل أجهزة الحواسيب وتحميل أنظمتها التشغيلية وتعريف الوصلات الخاصة بالربط الشبكي من خلال القرص المدمج المرفق مع الوصلة ومن ثم القيام بالعنونة اللازمة لكل جهاز حاسوب كما هو موضح في التمرين الكل جهاز حاسوب كما هو موضح في التمرين السابق، فمثلاً إذا كان العنوان IP في الجهاز الأول 192.168.100.1 فأن الهابان المنائي 192.168.100.2 وهكذا ولا يخفى عليك عزيزي الطالب أن اختيار IP من نوع الفنة Class C وذلك لأنه في حالة ربط هذه الشبكة بالشبكة العالمية الأنترنت من خلال وسائل الربط الشبكي الخاصة بذلك فأن العناوين التي أعطيت لأجهزة الحواسيب سوف تكون موائمة مع العنونة للشبكة العالمية.


المناقشة

- ماهي الفائدة العملية من ربط الحواسيب بالهيئة الطبوغرافية الناقلة Bus؟
- ما تأثير زيادة عدد الحواسيب المربوطة بالسلك الناقل الرئيس لهذا النوع من الربط؟
 - ما هي المساوئ التي من الممكن ملاحظتها عملياً في هذا النوع من الربط؟

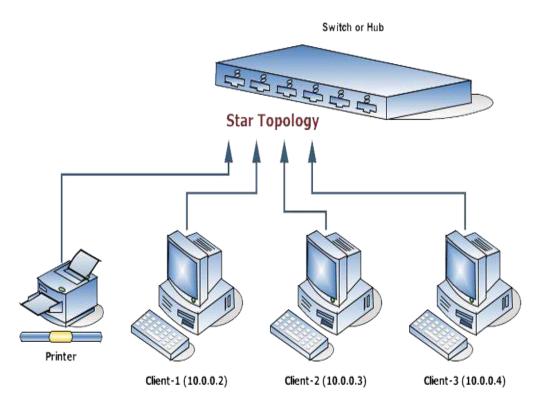
		۷	استمارة قائمة الفحصر		
الجهة الفاحصة:					
المرحلة:					
			ص:	التخص	
			نمرين:	اسم الذ	
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم	
		% 3	ارتداء بدلة العمل	١	
		%10	مراحل تثبيت وصلات الربط الشبكي وإنشاء الموصلات المحورية المطلوبة وتثبيتها ببطاقات الربط الشبكى	۲	
		%10	مراحل تعريف الحواسيب والعنونة وتحقيق الربط الشبكي بينها	٣	
		%1.	المناقشة	٤	
		%00	الزمن المخصص	٥	
			٤,	المجمو	
	l	التوقيع	فاحص	اسم الذ	
			3	التاريخ	

STAR من النوع النجمي شبكات النطاق المحلي من النوع النجمي

تقوم الشبكات المحلية ذات الطبوغرافية التصميمية من النوع النجمة Star بربط أجهزة الحاسوب بأسلاك موصلة بمكون أو جهاز مركزي يطلق عليه المحور Hub كما يسمى أيضا المجمع Concentrator و أحيانا يسمى النقطة المركزية Central Point، يمكن أن يكون الوسط الناقل في هذه الشبكة من سلك مزدوج مجدول أو سلك محوري أو ليف بصري والشكل (٤-١٧) يوضح شكل هذه الطبوغرافية:

شكل (٤ ـ ١٧) يوضح طبوغرافية الربط النجمي Star

الإشارات تنتقل من الحاسوب المصدر الذي يرغب في إرسال البيانات إلى النقطة المركزية أو Hub ومنه إلى باقي الحواسب على الشبكة، نظام التوصيل في Hub يعزل كل سلك من أسلاك الشبكة عن الآخر. وبالتالي إذا توقف جهاز حاسوب ما أو انقطع السلك الذي يوصله بالمجمع فلن يتأثر إلا الحاسوب الذي توقف أو انقطع سلكه بينما باقي الأجهزة ستبقى تعمل من خلال الشبكة دون أي مشاكل. ولكن إن توقف المجمع عن العمل فستتوقف الشبكة بالكامل عن العمل. يعتبر تصميم النجمة Star الأكثر إراحة من بين التصاميم المختلفة حيث أنه يسمح بتحريك الأجهزة من مكانها و إصلاحها و تغيير التوصيلات دون أن تتأثر الشبكة بأي خلل، أما عن مساوئ هذا النوع فتتلخص بارتفاع تكلفته من بين التصاميم الأخرى حيث إن إنشاء هذا النوع من الشبكات يتطلب الحاجة إلى أسلاك كثيرة والمجمع قد يكون سعره مرتفعا وذلك وفقاً لمواصفاته ودرجة تعقيده.


مميزاتها:

- ١ سهولة التركيب.
- ٢ سهولة تحديد الأعطال و صيانتها.
 - ٣ سهولة التحكم في الشبكة.
- ٤ الحصول على اعتمادية عالية حيث إنها لا تتأثر بوصلات الكيبلات وعطل الأجهزة.

عيوبها:

- ١ تعتمد على نقطة مركزية واحدة وهي المجمع Switch ولذلك في حالة عطل المجمع تتوقف الشبكة بالكامل.
 - ٢ التكلفة العالية حيث أنها تحتاج إلى وصلات خاصة و أجهزة مجمعة خاصة.

وتُعدُ هذه الشبكة هي أكثر الشبكات استخداما بسبب مرونتها وقدرتها على التوسع مع التكلفة المنخفضة وترتبط الأجهزة في الشبكة النجمية عن طريق (Switch & Hub) ويتم توصيل كل جهاز عن طريق كيبل منفصل وتستخدم هذه الشبكة الكيبلات المجدولة (STP & FTP & UTP) وتسمى بنية الشبكة عن معات T كما في الشكل (٤-١٨)، ويمكن توصيل مجموعة من الشبكات النجمية عن طريق توصيل مجمعات بصورة خطية متتالية وتسمى هذه الشبكة Star Bus Topology ويمكن أيضاً التوصيل بطريقة حلقية وتسمى وتسمى Star Ring Topology.

شكل (٤ - ١٨) يوضح تمثيل تصميمي لطبو غرافية الربط النجمي Star مع ربط طابعة

Ring تصميم شبكات النطاق المحلي نوع الحلقة 7-4

هي شبكة تكون على الشكل الدائري على الأقل من الناحية النظرية حيث تنتقل الإشارات من عقدة إلى أخرى في اتجاه واحد فقط وتتصل كل عقدة مع عقدتين بشكل مباشر عقدة ترسل لها وعقدة تستقبل منها وهي تشارك بشكل فعال في إرسال أي رسالة عبر الشبكة وفي بعض الحالات تقوم بتقوية الإشارة قبل تمريرها إلى العقدة التالية وهي في هذه الحالة عكس شبكة الناقل الخطي. وتعتمد الشبكة الحلقية من أجل تجنب التضارب على طريقة تدعى تمرير العلامة حيث توجد علامة تدور في الشبكة وعند رغبة أحد العقد بالإرسال تنتظر حتى تمسك بالعلامة ثم تعدل فيها لتكون مشغولة و ترسلها مع الإشارة فبذلك لا يستطيع أي شخص الإرسال في تلك اللحظة حتى يتم الانتهاء من الإرسال و تنتقل الإشارات على مدار الحلقة في اتجاه واحد وتمر من خلال كل جهاز على الشبكة، ويقوم كل حاسوب على الشبكة بعمل دور مكرر الإشارة حيث أن كل جهاز تمر من خلاله الإشارة يقوم بإنعاشها وتقويتها ثم يعيد إرسالها على الشبكة إلى الحاسوب التالي، ولكن لأن الإشارة تمر على كل جهاز في الشبكة فإن فشل أحد الأجهزة أو توقفه عن العمل سيؤدي إلى توقف الشبكة ككل عن العمل ، التقنية المستخدمة في إرسال البيانات على شبكات الحلقة يطلق عليها اسم Token الشبكة ككل عن العمل ، التقنية المستخدمة في إرسال البيانات على شبكات الحلقة يطلق عليها اسم Token الشبكة

شكل (٤ _ ١٩) يوضح طبو غرافية الربط الحلقي Ring

عندما يريد جهاز ما على الشبكة إرسال بيانات ما فإن عليه الانتظار حتى يتسلم إشارة حرة أو Token Free تخبره أنه قادر على إرسال بياناته على الشبكة، عندما يتسلم الحاسوب الذي يريد إرسال بياناته، الإشارة الحرة فإنه يضيف إليها بياناته وبالإضافة لذلك يقوم بإضافة عنوان إلكتروني يحدد وجهة إرسال هذه البيانات

أي أنه يحدد عنوان جهاز الحاسوب الذي ترسل إليه البيانات، ثم يرسل هذه الإشارة Token حول الحلقة. تنتقل هذه الإشارة من جهاز حاسوب إلى آخر حتى تجد الجهاز الذي يتوافق عنوانه الإلكتروني مع العنوان المشفر داخل الإشارة وحتى هذه اللحظة فإن الإشارة ما تزال غير محررة، وأن جهاز الحاسوب المستقبل لهذه الإشارة يقوم بنسخ البيانات الموجودة عليها ثم يعيد إرسالها على الشبكة إلى الجهاز الأصلي الذي أرسل هذه الإشارة وذلك بعد أن يضيف عليها رسالة تبين أن البيانات قد تم استلامها بشكل صحيح، وهكذا تنتقل الإشارة مرة أخرى على الشبكة وتمر على كل الأجهزة حتى تصل إلى الحاسوب الأصلي الذي أرسل هذه الإشارة، بعد أن يقوم هذا الحاسوب بالتأكد من محتويات هذه الإشارة وأنها قد تَم تسلمها بشكل صحيح فإنه يقوم بإزالتها ويرسل بدلا منها إشارة حرة Token يطلقها على الشبكة لتنتقل من جديد إلى الحاسوب التالي فإذا كان يريد إرسال بيانات ما فإنه يأخذ هذه الإشارة الحرة ويضيف إليها بياناته، وإن لم يكن لديه أي بيانات لإرسالها فإنه سيمرر هذه الإشارة إلى الحاسوب التالي وهكذا. كوسيلة لإرسال البيانات فإن Token بيانات لإرسالها فإنه لسرعة الفائقة فإن أداء الشبكة يكون ممتازا حتى في وجود عدد كبير من الأجهزة على الشبكة، ولكن تبقى مشكلة مثل ما هو عليه في شبكات Bus أنه عند تطوير الشبكة يجب إيقاف عملها في أثناء عملية التطوير.

ومن محاسن هذا النوع انه أيضًا سهل التركيب ورخيص ومن سلبياته أنه عند حدوث مشكلة يصعب تحديدها وإذا انقطع الكبل تتوقف الشبكة بشكل كامل، لهذا يُعدُ هذا النوع من طبوغرافية الربط من الأنواع قليلة الاستخدام حالياً بسبب صعوبة هذا النوع في معالجة حالات الخلل الحاصلة في الشبكة وبسبب صعوبة هذا النوع في إضافة أي أجهزة حاسوب أخرى للشبكة إذا ما أريد تطوير وإحداث تغيير في الشبكة الأصلية وذلك لأن إضافة أي جهاز حاسوب آخر يتطلب إعادة تنصيب وعنونة باقي الحواسيب من جديد بعكس الشبكة المحلية ذات الطبوغرافية النجمية Star التي تتميز بسهولة التحديث والتطوير وإن إضافة أي حواسيب أخرى إلى هذه الشبكة لا يتطلب إعادة تنصيب وعنونة حواسيب الشبكة.

رقم التمرين: (٤ -٤) الزمن المخصص: ٣ ساعات

اسم التمرين: التدريب على معرفة كيفية ربط شبكة محلية من النوع حلقي Ring

مكان التنفيذ: مختبر شبكات الحاسوب

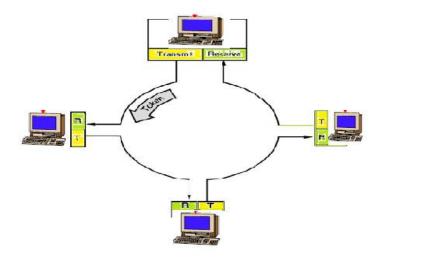
أولا: الأهداف التعليمية:

١

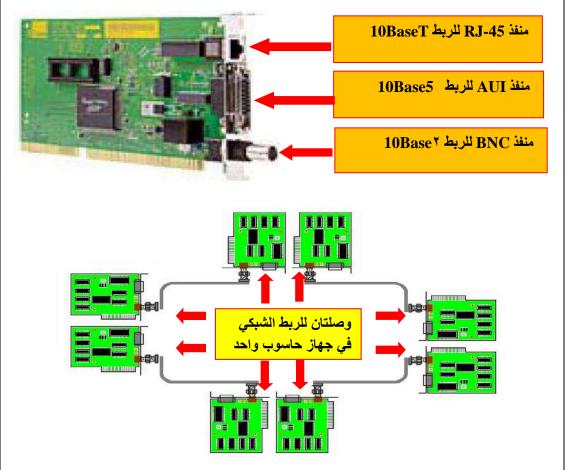
إن يكون الطالب قادراً على إنشاء وربط شبكة محلية من النوع الحلقي ثانيا: التسهيلات التعليمية:

۱ ـ أجهزة حاسوب (أقل عدد هو ثلاثة أجهزة) ٢ ـ موصل محوري Coaxial

٣- بطاقة شبكة بقدر ضعف عدد أجهزة الحاسوب (تحتوى منفذ ربط BNC)


٤ ـ مقابس ربط (فيش BNC)

٥ عدد يدوية لتأسيس موصلات الربط في الشبكة ٦ دفتر ملاحظات


ثالثا: خطوات العمل، النقاط الحاكمة، الرسومات

ارتد عزيزي الطالب بدلة العمل المختبرية الملائمة لجسمك.

أنظر عزيزي الطالب إلى التصميم أدناه والذي يمثل تصميم لشبكة محلية بسيطة تتكون من عدد محدود من الحواسيب (ليكن عدد الحواسيب ثلاثة كأقل عدد)، المراد ربط هذه الحواسيب شبكياً بهيئة حلقة Ring وبإستخدام السلك المحوري Coaxial Cable وبالإمكان ربط هذا النوع باستخدام سلك UTP مجدول نوع عبور Cross-over ولكننا سنعتمد في تمريننا التطبيقي هذا النوع المحوري.

لغرض تطبيق هذا التصميم عملياً، نأخذ وصلات للربط الشبكي LAN Card تحتوي على فتحة للربط الشبكي من النوع BNC كما هو في الشكل أدناه، ثم قم عزيزي الطالب بتثبيتها في الحواسيب في الفتحات الخاصة بها في اللوحات الأم ومن ثم قم بربطها مع بعضها البعض بالأسلاك المحورية بعد تأسيسها بالمقابس وحسب الأطوال والمواصفات الفنية المحددة واحرص أن يكون في كل جهاز حاسوب وصلتان للربط الشبكي (إحداهما للإرسال والأخرى للاستقبال) كما هو واضح في الشكل التالي:

بعد الانتهاء من ربط المكونات المادية، قم بتشغيل أجهزة الحواسيب وتحميل أنظمتها التشغيلية وتعريف الوصلات الخاصة بالربط الشبكي من خلال القرص المدمج المرفق مع الوصلة ومن ثم القيام بالعنونة اللازمة لكل وصلة في جهاز حاسوب بالشبكة ونقصد به إعطاء عنوان IP لكل وصلة في جهاز الحاسوب ، فمثلاً إذا كان العنوان IP في الوصلة الأولى في الجهاز الأول 192.168.100.1 فأن اله IP للوصلة الثانية في الجهاز هو 192.168.100.2 وهكذا ولا يخفى عليك عزيزي الطالب أن تحرص على اختيار IP من نوع الفئة Class C وذلك لأنه في حالة ربط هذه الشبكة بالشبكة العالمية الأنترنت من خلال وسائل الربط الشبكي الخاصة بذلك فأن العناوين التي أعطيت لأجهزة الحواسيب سوف تكون موائمة مع العنونة للشبكة العالمية.

المناقشة

٥

٣

- ماهى فائدة ومساوئ الربط الحلقي Ring؟
- ما تأثير زيادة عدد الحواسيب المربوطة بالسلك الناقل الرئيس لهذا النوع من الربط؟

استمارة قائمة الفحص						
			الفاحصة:	الجهة		
		المرحلة:	طانب:	اسىم الد		
			ص:	التخص		
اسم التمرين:						
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم		
		% ٥	ارتداء بدلة العمل	1		
		%10	مراحل تثبيت وربط وصلات الربط الشبكي مع بعضها البعض بالإسلاك المحورية	۲		
		%10	مراحل تحقيق الربط الشبكي وعمل الحواسيب بصورة شبكة حلقية وتحقيق الإرسال والإستقبال	٣		
		%1.	المناقشة	٤		
		% 0	الزمن المخصص	0		
			رع	المجمو		
	1	التوقيع	فاحص	اسم الأ		
			Ć	التاريخ		

أسئلة الفصل الرابع

س ا: ما المقصود بالنموذج OSI Model؟ وما هي طبقاته؟

س٢: ماهي الشبكة المحلية؟ أذكر أهم مميزات هذه الشبكة؟

س٣: ماهي المكونات الأساسية لتصميم وربط شبكة محلية؟

س ٤: ما المقصود بطبو غرافية الربط الشبكى؟ وماهى تصنيفاته؟

س٥: ماهي أهم مزايا الشبكة المحلية من النوع الناقل Bus?

س٦: ما هي أهم الفروقات الأساسية بين الربط النجمي والربط الناقل؟

س٧: ما هي مساوئ الربط الحلقي في الشبكات المحلية؟

س٨: أذكر الخطوات العملية لتثبيت وربط شبكة محلية مصغرة متكونة من جهازي حاسوب.

س٩: أذكر خطوات ربط وتعريف طابعة وجعلها مشتركة بين أجهزة حواسيب الشبكة المحلية.

س · ١: أذكر خطوات تصميم وربط شبكة محلية من النوع الناقل Bus.

س ١١: أذكر خطوات تصميم وربط شبكة محلية من النوع النجمي Star.

س ٢٠: ما هي الفائدة من وجود المجمع المركزي Hub في الربط الشبكي النجمي؟

س١٣: ما هو المقصود بالعنوان IP في الشبكات المحلية ؟ كيف تتم عنونة جهاز الحاسوب؟

س ١٤: هل بالإمكان تثبيت أكثر من وصلة ربط شبكي في جهاز حاسوب واحد ؟ ولأي نوع من الربط يستخدم؟

س ١٥: هل بالإمكان ربط شبكة محلية من النوع الناقل Bus باستخدام مجمع Hub؟ في أي حالة يستخدم؟ ناقش ذلك.

س١٦: ماهي نظرية 3-4-5 المستخدمة في الربط الشبكي؟ أشرحها مع تقديم أمثلة تصميمية للحالات.

الفصل الخامس شبكات الإيثرنت

(Ethernet)

أهداف الفصل

يهدف هذا الفصل الى تعريف الطالب على نوع شائع الاستخدام من أنواع الشبكات والمعروفة بشبكة الإيثرنت

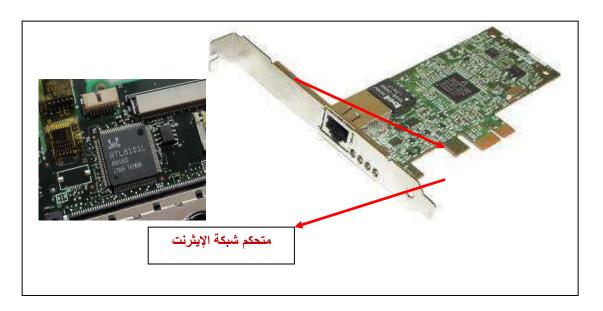
محتويات الفصل الخامس

- (٥ ١) مفاهيم أساسية لشبكة الإيثرنت
 - (٥ ٢) متحكم شبكة الإيثرنت
 - (٥ ٣) أنواع شبكات الإيثرنت
 - (٥ ٤) طرق ربط شبكات الإيثرنت
 - (٥ ٥) الشبكات اللاسلكية

الفصل الخامس شبكات الإيثرنت

(٥ - ١) مفاهيم أساسية لشبكة الإيثرنت

تُعدُ شبكات الإيثرنت Ethernet إحدى معماريات الشبكات المحلية التي طورتها أساسا شركة Xerox في منتصف السبعينيات من القرن الماضي. و تُعدُ هذه المعمارية الأكثر شهرة هذه الأيام. تستخدم الإيثرنت طريقة خاصة لتسمح لأجهزة الكمبيوتر المتصلة بالشبكة بإرسال بياناتها على الشبكة و ذلك لتنظم حركة المرور على الشبكة ، هذه الطريقة تسمى تحسس الناقل متعدد الوصول مع اكتشاف التصادم أو Carrier Sense Multiple Access with Collision Detection (CSMA/CD).


باستخدام هذه الطريقة يراقب الكمبيوتر الشبكة و يقوم بالإرسال عندما يحس أن السلك غير مشغول بأي إشارة لأنه لا يستطيع سوى كمبيوتر واحد إرسال البيانات في نفس الوقت. إذا حصل تصادم ناتج عن أن كمبيوتر آخر قام بإرسال البيانات في نفس الوقت ،فإن كلا الكمبيوتران سيتوقفان عن الإرسال و سينتظر كل منهما وقت عشوائي ليعيد إرسال بياناته مما يقلل من احتمال حدوث تصادم آخر.

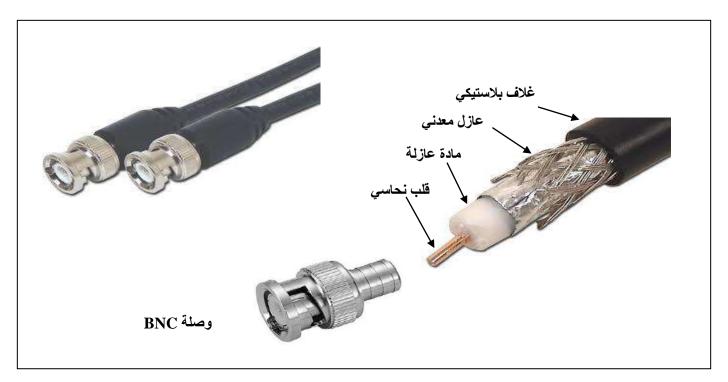
نموذجيا فإن شبكات الإيثرنت تنقل البيانات بمعدل ١٠ ميجابت في الثانية، و لكن الأنواع الأحدث تدعم سرعة نقل بيانات تصل إلى 100 ميجابت في الثانية. وحاليا تتوافر أنواع تدعم سرعة ١ جيجا بت في الثانية. مع أن الإيثرنت تقليديا كانت تستخدم مع تصميم الشبكة من نوع الناقل (Bus) إلا أنها تدعم أيضا التصميم النجمي (Star).

تستخدم الإيثرنت نظام إرسال الإشارة المسمى نطاق الإرسال الأساسي (Baseband Signaling) و لكنها من الممكن أن تدعم نطاق الإرسال الواسع (Broadband Signaling).

(٥ - ٢) متحكم شبكة الإيثرنت

أن أي جهاز متصل بشبكة الإيثرنت يحتاج إلى ما يسمى متحكم بشبكة الإيثرنت أو (Ethernet Network Controller) وهو عبارة عن أداة تحدد فيما إذا كان السلك خاليا من الإشارات أم لا ، لكي يتم إرسال الإشارات عليه دون حصول تصادم . يوجد هذا المتحكم على بطاقة الشبكة في جهاز الكمبيوتر كما موضح بالشكل (٥-١).

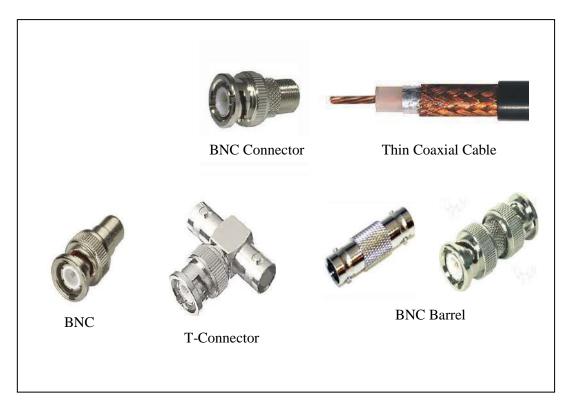
الشكل (٥ – ١) متحكم شبكة الإيثرنت


(٥ - ٣) أنواع شبكات الإيثرنت

تصنف شبكات الإيثرنت إلى عدة أصناف وذلك وفقاً لخيارات التشبيك المتوافقة مع شبكات الإيثرنت. قبل الخوض في الأنواع لنلق نظرة على التسمية المستخدمة في شبكة الإيثرنت، فعلى سبيل المثال النوع 10-Base-X:

- ✓ • 1: يشير الرقم الأول إلى سرعة نقل البيانات في الشبكة مقاساً بالميجابت في الثانية أي في هذا النوع سرعة الشبكة 10 Mbps ميجابت في الثانية.
- ✓ Base: يشير القسم الثاني من الاسم إلى طريقة الإرسال المستخدمة هل هي من النطاق الأساسي
 (Broadband) أم من النطاق الواسع (Broadband).
- ✓ X: القسم الثالث من الاسم قد يكون رقماً أذا ضرب في ١٠٠ يعطي دلالة على الطول الأقصى لكل قسم (segment) منفصل من السلك في الشبكة مقاساً بالمتر، وقد يكون حرفاً يدل نوع السلك على سبيل المثال (T-Twisted Pair).

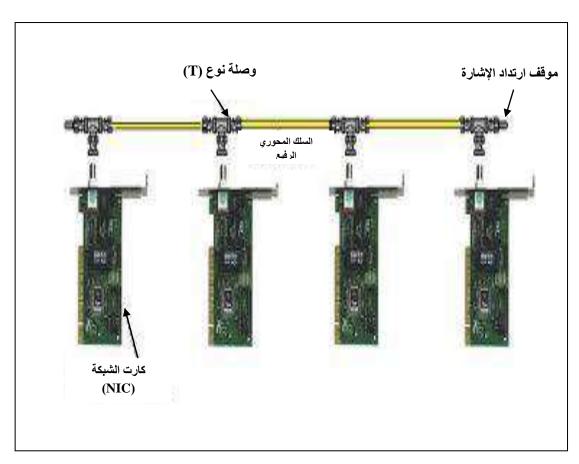
0-٣-1: شبكات الإيثرنت (10 Base 2)


تم وضع أساسيات شبكة (2 10Base) عام ١٩٨٥ ، وهي شبكة إيثرنت تعمل بسرعة 10 Mbps ميجابت في الثانية و تستخدم نظام إرسال الإشارة الأساسي (Baseband) وتعمل من خلال تصميم الشبكة من النوع الناقل (Bus Topology)، السلك المستخدم في هذا النوع من الشبكات هو السلك المحوري الرقيق (Thin Coaxial) وكما موضح في الشكل (٥-٢).

الشكل (٥ - ٢) السلك المحوري الخفيف المستخدم في شبكة الإيثرنت (10 Base 2)

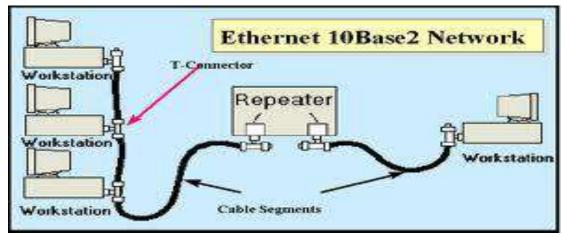
حيث أن الطول الأقصى للسلك المستخدم في شبكات (10 Base 2) نظريا ٢٠٠ متر ولكن عمليا سيكون ١٨٥ متراً وقد تم تقريبه إلى ٢٠٠ من أجل تسهيل التعريف ، بينما أقصر مسافة بين جهازي حاسوب هي نصف متر واكبر عدد من الحواسيب التي يمكن ربطها على سلك واحد هو ٣٠ حاسوباً. أما مكونات شبكة 10 Base 2

- المرسل والمستقبل (10Base2 Transceiver) و الذي يكون مركب على كارت الشبكة في الحاسوب.
 - السلك المحوري الرقيق (Thin Coaxial Cable).
 - وصلات من نوع T (T- Connector).
 - وصلات من نوع الماسورة (50 ohm) . BNC Barrel Connectors
 - موقفات ارتداد الإشارة (50 ohm) موقفات ارتداد الإشارة
 - مكررات الإشارة Repeaters


الشكل (٥ - ٣) وصلات BNC المستخدمة في شبكة الإيثرنت 10Base2

ولغرض تشكيل شبكة كاملة من النوع 2 10Base مع افتراض أن شبكتنا مكونة من أكثر قسم (Segment) سنقوم بما يلي:

أولاً: نشبك وصلة الماسورة (BNC Connector) في كل طرف من السلك إلى وصلة أخرى على شكل حرف T تسمى (T-Connector).


ثانياً: نشبك وصلة T إلى متحكم الإيثرنت (Ethernet Controller) والذي يكون مركبا على بطاقة الشبكة في جهاز الحاسوب (NIC).

ثالثاً: يجب أن نلاحظ أن كل طرف قسم Segment غير متصل بقسم آخر يجب أن نضع في نهايته موقف ارتداد الإشارة (BNC Terminator) والذي بدوره يكون متصلا بوصلة T التي تكون موصلة إلى لوحة الشبكة، بهذا نكون قد شكلنا شبكة 10 10Base 2 متكاملة وكما موضح بالشكل (ϵ -2).

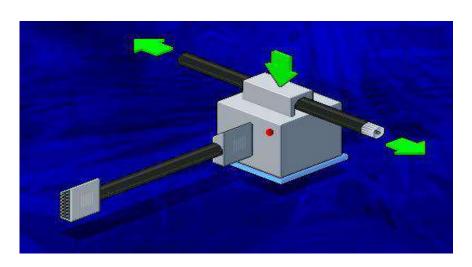
الشكل (٥ - ٤) شبكة الإيثرنت نوع (10Base2)

من الممكن توسيع الشبكة وذلك عن طريق ربط الأقسام مع بعضها البعض باستخدام وصلة الماسورة (BNC Barrel Connector)، لكن لغرض تقوية الإشارة المنتقلة بين الأقسام من الممكن استخدام مكررات الإشارة (Repeaters) لتوسيع الشبكات المحلية لتدعم حتى ١٠٢٤ جهازا و لزيادة الطول الأقصى للشبكة لتصل نظريا إلى ١٠٠٠ متر و عمليا ٩٢٥ متراً وكما موضح بالشكل (٥-٥).

الشكل (٥ - ٥) توسيع شبكة الإيثرنت (10Base2) باستخدام مكرر الإشارة (Repeater)

هـ٣-: شبكات الإيثرنت (10 Base 5)

وتصل سرعة شبكات 5 10Base إلى ١٠ ميجابت في الثانية و تستخدم الإرسال من النوع الأساسي (Bus Topology) و تدعم تصميم الشبكة من النوع الناقل (Bus Topology)، وتستخدم الأسلاك من النوع المحوري الثخين (Thick Coaxial Cable)، وهذا النوع من الأسلاك يُعدُ النوع القياسي لشبكات الإيثرنت لأنه النوع الأصلي الذي كان مستخدما عند إنشاء شبكات الإيثرنت. و كما موضح في الشكل (٥-٦).



الشكل (٥ - ٦) السلك المحوري الثخين المستخدم في شبكة الإيثرنت 10Base5

في هذا النوع من الشبكات يصل العدد الأقصى لأجهزة الكمبيوتر التي من الممكن أن تتصل بقسم واحد من الشبكة إلى ١٠٠ جهاز. أما الحد الأدنى لطول السلك بين جهازين على الشبكة فسيكون ٢٠٥ متر، أن السبب عزيزي الطالب في تحديد حد أدنى لطول السلك بين أي جهازين على الشبكة نعزوه إلى أن الاقتراب كثيرا بين الأجهزة يؤدي إلى تشويه الإشارات التي يرسلها كل من هذه الأجهزة بسبب الانعكاس الذي قد يحدث للإشارة (Reflection)، أما الطول الأقصى للسلك فيصل إلى ٥٠٠ متر. حيث يلون السلك المحوري الثخين عادة باللون الأصفر وتوضع علامة سوداء بعد كل ٢٠٥ متر لتبين المكان الذي من الممكن شبك أجهزة إضافية إليه.

ولغرض ربط شبكة من هذا النوع نحتاج إلى المكونات التالية:

- مرسل مستقبل Transceiver ويكون منفصلا عن بطاقة الشبكة.
 - کیبل خاص یسمی Transceiver Cable.
 - موقف الارتداد ٥٠ Terminator-ohm
 - وصلات أو مشابك لوصل المكون الثاني بالمكون الأول.
 - مجمع أسلاك Wiring Hub.
 - وصلات ماسورة Barrel Connectors
 - أداة ثقب Coring Tool

الشكل (\circ – \lor) السلك المحورى الثخين والكيبل الشريطى

في هذه الشبكات يكون المرسل- المستقبل (Transceiver) منفصلا عن بطاقة الشبكة ويصل بين السلك الثخين و سلك المرسل-المستقبل، ولغرض إنجاح عمل هذه الشبكة يحتاج السلك الثخين إلى إعداد قبل أن يتم وصله بالمرسل-المستقبل، ويتم ذلك بثقبه بأداة ثقب Coring Tool ويسمح هذا الثقب بالوصول إلى محور السلك المعدني الذي يتم وصله بالمرسل-المستقبل، وهنالك طريقة أخرى تستخدم بدلا من الثقب و لكنها تستلزم قطع السلك إلى قطعتين ومن ثم وصل القطعتين معا باستخدام In-line Connector والذي يتصل بدوره بالمرسل - المستقبل.

أن من أهم مميزات شبكات 5 Base هي:

- تُعدُ الميزة الأساسية لهذه الشبكات هو مقاومتها الكبيرة للتداخل الناتج عن المجال الكهرومغناطيسي (Electromagnetic Interference (EMI) مما يجعلها مناسبة للعمل في البيئات التي تعاني من هذا الأمر كما في المصانع.
 - تستطيع العمل على مسافات أكبر من شبكات Base T و Base 2

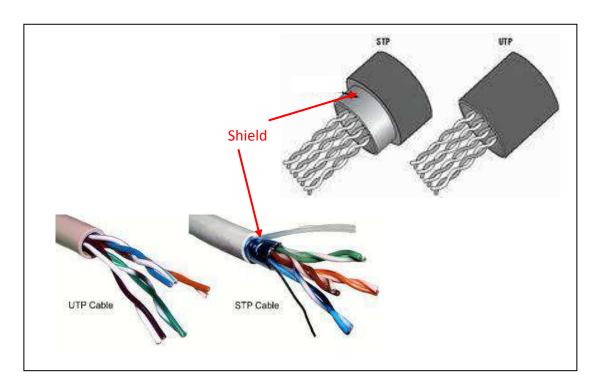
وبالرغم من هاتين الميزتين فأن استخدام هذا النوع من الشبكات بدأ بالانحسار ليحل محلها شبكات 10Base2 الأقل تكلفة.

هـ٣-٣: شبكات الإيثرنت (10 Base F)

تستخدم شبكات Base F الألياف البصرية (Fiber Optics) للوصل بين الأجهزة ،والطول الأقصى للسلك يصل إلى ٢ كيلومتر ويُعدُ هذا تطورا كبيرا بالمقارنة مع الأنواع الأخرى من شبكات الإيثرنت، و لهذا تستخدم هذه الشبكات للوصل بين البنايات والمراكز مترامية الأطراف التي لا يمكن الوصل بينها باستخدام الأسلاك المعدنية.

تتكون شبكات Base F من ما يلى:

- سلك ليف بصري (Fiber Optic (Fiber optic cable)
- مرسل مستقبل من الألياف البصرية (Fiber optic transceiver-FOT).
- مشابك صغيرة لتجميع أسلاك الألياف البصرية وتسمى Sub Miniature Assembly Connectors


هنالك نوعان أساسيان لأسلاك الألياف البصرية:

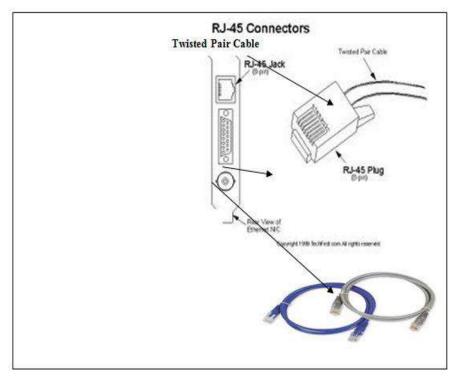
- وحيد النمط (Single-Mode)
- متعدد الأنماط (Multi-mode)

حيث يستخدم وحيد النمط للاتصالات البعيدة بين مسافات شاسعة، بينما يستخدم متعدد الأنماط في بيئة الشبكات المحلية. وفي الشبكات المحلية التي يستخدم فيها أكثر من نوع واحد من الأسلاك بأن يكون أحدها أسلاك ملتوية و يكون الآخر ألياف بصرية، في هذه الحالة يستخدم FOT والذي يقوم بتحويل الإشارات الكهربائية من الأسلاك الملتوية إلى إشارات بصرية تجري في الألياف البصرية و بالعكس.

ه-٣-٤: شبكات الإيثرنت (10 Base T)

وهي شبكة إيثرنت تعمل بسرعة 10 ميجابت في الثانية وتستخدم الإرسال من النوع الأساسي أي Baseband والأسلاك التي تستخدمها هي من النوع الزوج الملتوي (Twisted Pair)، نموذجيا تستخدم هذه الشبكات النوع غير المغطى من الزوج الملتوي للأسلاك أو (Unshielded Twisted Pair (UTP) الفئات T و S و S من هذا النوع من الأسلاك، ولكنها تستطيع العمل أيضا مع النوع المغطى من هذه الأسلاك أو S الأسلاك أو أو الأسلاك أو S الأسلاك أو أو الأسلاك أو أو الأسلاك أو أو الألب ال

STP UTP السلك الملتوي من نوع $(\circ - \land)$


تصميم شبكات (Star Topology) هو ماديا أو حقيقية عبارة عن تصميم النجمة (Star Topology) ولكن منطقيا يعمل كتصميم الناقل (Bus Topology).

أن أغلب شبكات (To Base T) موصلة بنفس أسلوب شبكات النجمة بمعنى أن هناك أجهزة كمبيوتر متصلة بنقطة مركزية هي المجمع (Hub) و لكن النظام المستخدم في إرسال الإشارات على الشبكة هو نفس النظام المستخدم في شبكات الناقل وهو الذي شرحناه سابقا وسميناه أسلوب تحسس الناقل متعدد الوصول مع اكتشاف التصادم (CSMA/CD).

بالإضافة إلى الأسلاك هناك مكونات أخرى لشبكات (10 Base T) وهي:

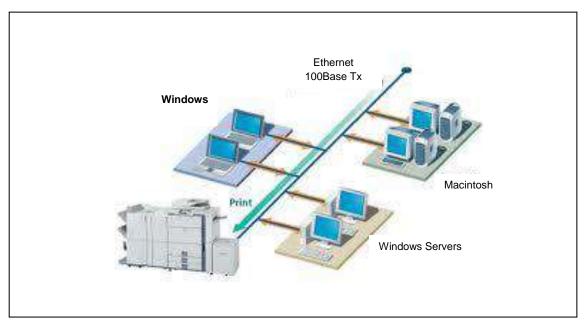
- المرسل المستقبل (10BaseT Transceiver) موجود على كارت الشبكة (NIC).
 - مجمع الأسلاك (Wiring Hub).
 - مكررات الإشارة (Repeaters).
 - موصلات أو مشابك (RJ-45 Connector).

نموذجيا توصل أسلاك الشبكة إلى مجمع الأسلاك (HUB) والذي يعمل كمكرر إشارة متعدد المنافذ (Multiport repeater) والذي بدوره يستخدم لزيادة طول السلك. في أسلاك Twisted Pair يوصل في أطرافها مشابك من النوع RJ-45 Connecters و التي تعمل على إيقاف ارتداد الإشارات على السلك كما موضح في الشكل (9-9).

الشكل (٥ – ٩) يوضح استخدام مشبك RJ-45 في أسلاك الشبكة

نظراً للمرونة العالية التي يتمتع به هذا النوع من الشبكات وكذلك سهولة التطبيق وقلة الكلفة فقد تم تطوير هذا النوع من شبكات الإيثرنت لتمكينه من دعم التقنيات الحديثة في الاتصالات وظهرت أنواع أعلى سرعة على سبيل المثال (Gigabit Ethernet، Fast Ethernet).

ه-٣-ه: شبكات الإيثرنت (100Base X – Fast Ethernet)


وتصل سرعة شبكات Base x إلى ١٠٠ ميجابت في الثانية و تستخدم الإرسال من النوع الأساسي (Baseband) وتدعم تصميم الشبكة من النوع النجمي (Star Topology) وتدعم تصميماً وعملاً نظراً لاستخدامها أجهزة المبادلات بدلاً من المجمعات، والتي سنتعرف على الفرق بينهما لاحقاً. ويستخدم هذا النوع من الشبكات الأسلاك من النوع الزوج الملتوي ذو الفئة الخامسة (Cat5) وبنوعية (UTP, STP)، كذلك تدعم أسلاك الألياف البصرية.

يندرج تحت شبكات Fast Ethernet 100BaseX ثلاثة أنواع أساسية:

- 100 Base T4 وتستخدم أربعة أزواج من أسلاك UTP فئة ٣ و ٤ و ٥.
 - 100 Base Tx وتستخدم زوجين من أسلاك UTP أو STP فئة ٥.
 - 100 Base Fx وتستخدم سلكان من الألياف البصرية.

النوع الثاني هو الأكثر شيوعاً واستخداماً في أغلب الشبكات الموجودة حالياً. أن مكونات شبكة النوع الثاني هو الأكثر شيوعاً واستخداماً في أغلب الشبكات الموجودة حالياً. أن مكونات شبكة 10BaseTx ولكنها غالباً ما تستخدم المبادلات بدلاً من المجمعات أو كلاهما معاً كما موضح بالشكل (٥-١٠).

كما ويجب أن ننوه بأنه يوجد في الوقت الحاضر شبكات إيثرنت مشابهة لشبكة Fast Ethernet ولكن بسرع تصل إلى ١٠٠٠ ميجابت في الثانية (1Gbps) ويطلق عليها (1000BaseTx-Gigabit) بسرع تصل إلى ١٠٠٠ ميجابت في الثانية (Cató UTP) وهنالك أنواع تصل سرعتها إلى ١٠٠٠٠ ميجابت بالثانية (10Gbps) وتستخدم الأسلاك من فئة 7 (Cat7 UTP).

100BaseTx الشكل (٥ – ١٠) شبكة إيثرنت

(٥ - ٤) طرق ربط شبكات الإيثرنت

بعد أن تعرفنا على أهم أنواع شبكات الإيثرنت لابد لك عزيزي الطالب أن تتعرف أهم الطرق والأجهزة المستخدمة لبناء شبكات الإيثرنت وتوصيل الحواسيب وكذلك ربط هذه الشبكات فيما بينها، وسوف يتم التركيز على شبكات الإيثرنت الشائعة الاستعمال وهي 100 Base Tx ،10 Base Tx ،00 Base الإيثرنت الشائعة الإشارات كالمكررات، وبعضها لربط أجهزة الحواسيب داخل شبكة الإيثرنت كالمجمع المركزي والمبدل، والبعض الأخر من الأجهزة يستخدم لربط الشبكات فيمل بينها كالموجه.

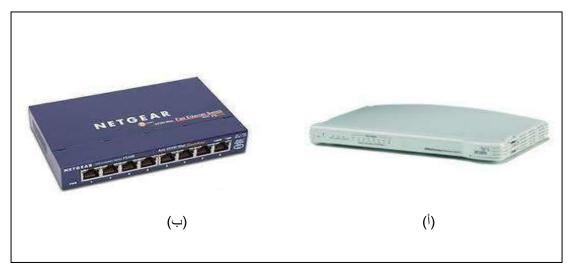
٥-٤-١: المكسرر (Repeater)

تتعرض الإشارة في أثناء عملية الإرسال للتشويش والتشويه عبر خطوط النقل، مما ولد الحاجة إلى تصميم جهاز يدعى المكرر (Repeater) يستخدم لأنعاش الإشارة المرسلة عبر الشبكة بحيث تبقى قوية عند وصولها إلى محطات العمل المستقبلة لها. ويوجد نوعان من المكررات: تماثلي (Analog) يضخم الإشارة فقط (يضخم الإشارة والتشويه الحاصل عليها)، ورقمي (Digital) يعيد بناء الإشارة لتصبح قريبة جداً من الأصلية.

الشكل (٥ – 11) مكرر الإشارة

٥-٤-٢: المجمع المركسزي (Hub)

تتصل أجهزة الحاسوب في معظم أنواع شبكات الإيثرنت المحلية بجهاز يقوم بدور نقطة وصل مركزية بين أجهزة الشبكة، ويدعى المجمع المركزي. أن وظيفة هذا الجهاز هو ربط قطع الشبكة (Segments) ببعضها ويوجد نوعان أساسيان من المجمعات هما المجمع النشط، والمجمع الخامل.


(Active Hub) المجمع النشط - المجمع

تُعدُ أغلب أجهزة المجمعات نشطة، بمعنى أن لديها المقدرة على أعادة توليد وأرسال إشارات البيانات على الشبكة بنفس الطريقة التي يعمل بها مكرر الإشارات (Repeater). لدى المجمعات عادة ما بين ٨ إلى ١٢ منفذاً (واحياناً اكثر) تستطيع أجهزة الحاسوب الاتصال بها، وتسمى هذه المجمعات أحياناً مكررات الإشارة متعددة المنافذ (Multi-Port Repeater). وهذا النوع من المجمعات يحتاج في العادة إلى التوصيل بالكهرباء لكي يعمل.

(Passive Hub) دالمجمع الخامل - ۲

يعمل هذا النوع من المجمعات كنقاط أتصال أي انه لا يقوم بتقوية أو توليد الإشارات فقط يمرر الإشارات الواردة بين القطع المختلفة للشبكة، وهذا النوع من المجمعات المركزية لا يحتاج للتوصيل بالتيار الكهربائي لكي يعمل.

يوجد في الجهة الأمامية من المجمع مجموعة من ثنائيات الإصدار الضوئي (LED) والتي تشير إلى حالة كل منفذ والى سرعة نقل البيانات عبر الشبكة، بينما تحتوي الجهة الخلفية من المجمع المنافذ التي بواسطتها يتم توصيل كل جهاز حاسوب في الشبكة كما موضح بالشكل (٥-١٢)

شكل (٥-١٢) المجمع المركزي – (أ) الجهة الأمامية (ب) الجهة الخلفية

من الممكن توسيع الشبكة عن طريق تركيب أكثر من مجمع واحد وهذا ما يطلق عليه المجمعات الهجينة وهي متوافقة مع أنواع مختلفة من الأسلاك.

٥-٤-٣: المبدل (Switch)

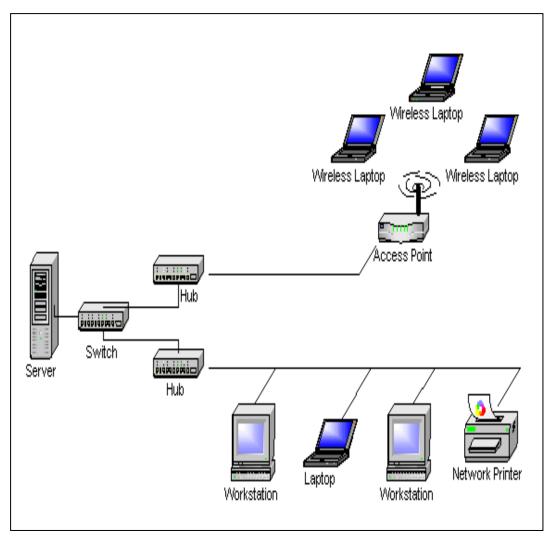
تعتبر المبادلات الجيل المتطور للمجمعات، ومما يميزها عن المجمعات ما يلي:

- ✓ يمرر المبدل الإشارة فقط إلى المنفذ المربوط عليه الجهاز المستقبل بينما المجمع المركزي يمرر الإشارة إلى جميع المنافذ.
- ✓ يحتوي المبدل على نفذ سريع واحد على الأقل لتوصيل أكثر من مبدل مع بعضها البعض، بينما يستخدم المجمع المنافذ الاعتيادية لتوصيل أكثر من مجمع.
 - ✓ يحتوي المبدل على عدد أكبر من المنافذ (Ports) مقارنة بالمجمع قد تصل إلى ٤٨ منفذ.
- ✓ قوة معالجة أضخم، حيث تتمتع جميع المنافذ بالسرعة القصوى للمبدل بدلاً من توزيعها بالتساوي على المنافذ كما في المجمع المركزي.
 - ✓ بعض أنواع المبادلات قابلة للتحكم والبرمجة.

وبشكل عام يجب أن نذكر أن المجمعات والمبادلات توفر مميزات وقدرات عالية للشبكات يمكن تلخيصها بالنقاط التالية:

- تسمح بتوسيع الشبكة وتغيير مكوناتها بكل سهولة ودون تعطيل عمل الشبكة.
- احتوائها على منافذ متنوعة تتوافق مع أنواع الأسلاك المختلفة والمستخدمة في ربط الشبكات.

- تساعد على المراقبة المركزية لنشاط الشبكة وحركة مرور البيانات.
- يتوافر في معظمها معالج داخلي خاص قادر على تحديد حجم حزم البيانات المارة عبر الشبكة واكتشاف المشاكل في حزم البيانات المرسلة وتوجيه تحذير حول المشكلة.
 - بعض أنواعها يستطيع تحديد جدولة زمنية يسمح فيها لجهاز ما بالاتصال في الشبكة وبأوقات محددة.


شكل (٥-١٣) أنواع مختلفة من المبادلات

٥-٤-٤: الموجه (Router)

يستخدم الموجه لربط الشبكات المختلفة مع بعضها البعض، حيث يقوم بتمرير حزم المعلومات بالاعتماد على العناوين المنطقية والتي تسمى (IP Addresses) كما ويتبع الموجه خوارزمية معينة (Protocol) تمكنه من اختيار المسار (Route) الأفضل لنقل حزم البيانات إلى هدفها عبر الشبكات الأخرى. أما في الأنترنت، فيمكن أن يكون الموجه الموجازاً أو برنامجاً يحدد المسار الأفضل عبر العقد للوصول إلى الهدف.

والشكل (٥-١٤) يوضح شبكة إيثرنت تستخدم أنواع مختلفة من أجهزة ربط الشبكات.

شكل (٥-٤١) شبكة إيثرنت تستخدم أنواع مختلفة من أجهزة الربط السلكية واللاسلكية

رقم التمرين: (5 – 1) الزمن المخصص: ٣ ساعات اسم التمرين: التعرف على أجهزة الربط الشبكي مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يتعرف الطالب على مختلف أنواع أجهزة الربط الشبكي المستخدمة في مختبرات شبكات الحاسوب.

ثانيا: التسهيلات التعليمية:

- ۱ جهاز مجمع مرکزي (Hub).
 - 2- جهاز مبدل (Switch).
 - ۳- جهاز موجه (Router).
 - ٤ ـ دفتر ملاحظات

ثالثًا: خطوات العمل ، النقاط الحاكمة ، الرسومات.

	Ì
تفحص عزيزي الطالب جهاز المجمع المركزي الموجود داخل المختبر ثم أجب عن الأسئلة التالية، بالطبع	Ì
الاجابات ستختلف حسب نوع الجهاز:	Ì
١. ما أسم الشركة المصنعة لهذا الجهاز؟	Ī
٢. ماعدد المنافذ (Ports) الموجودة في هذا الجهاز؟	
 ٣. كم عدد أجهزة الحاسوب التي يمكن توصيلها بالجهاز؟ 	١ ١
 ٤. مانوع الأسلاك التي يمكن توصيلها بالجهاز؟ 	
 هل الجهاز يحتاج الى تغذية كهربائية؟ 	
٦. هل يُعدُ الجهاز خاملاً أم نشطاً ؟	

س عزيزي الطالب جهاز المبدل الموجود داخل المختبر ثم أجب عن الأسئلة التالية، بالطبع الاجابات		
لف حسب نوع الجهاز:		
ما أسم الشركة المصنعة لهذا الجهاز؟	٠١	
ماهو موديل الجهاز؟	۲.	
ماعدد المنافذ (Ports) الموجودة في هذا الجهاز؟	۳.	
كم عدد أجهزة الحاسوب التي يمكن توصيلها بالجهاز؟	٤.	۲
مانوع الأسلاك التي يمكن توصيلها بالجهاز؟	٠.	
هل الجهاز يحتاج الى تغذية كهربائية؟	٦.	
هل يوجد زر لتشغيل وأطفاء الجهاز؟	٠.٧	
•••••••••••••••••••••••••••••••••••••••		
س عزيزي الطالب جهاز الموجه الموجود داخل المختبر ثم أجب عن الأسئلة التالية، بالطبع الاجابات لف حسب نوع الجهاز:		
ما أسم الشركة المصنعة لهذا الجهاز؟	١.	
ماهو موديل الجهاز؟	۲.	
أذكر أنواع المنافذ الموجودة في الجهة الخلفية للجهاز	۳.	
كم عدد منافذ الايثرنت في هذا الجهاز؟	٤.	٣
كم عدد شبكات الايثرنت التي يمكن توصيلها بالجهاز؟	۰.	
مانوع الأسلاك التي يمكن توصيلها بالجهاز؟	٦.	
هل الجهاز يحتاج الى تغذية كهربائية؟	٠.٧	
هل يوجد زر لتشغيل وأطفاء الجهاز؟	۸.	

استمارة قائمة الفحص					
الجهة الفاحصة:					
اسم ال التخص	•	المرحلة:			
اسىم اا	تمرین:				
الرقم	الخطوات	الدرجة القياسية	درجة الأداء	الملاحظات	
١	تدوين معلومات المجمع المركزي بصورة صحيحة	%10			
۲	تدوين معلومات المبدل بصورة صحيحة	%10			
٣	تدوين معلومات الموجه بصورة صحيحة	%10			
٤	أنجاز العمل ضمن الوقت المخصص	% 5			
المجم	المجموع				
اسىم اا	التوقيع				
التاريخ					

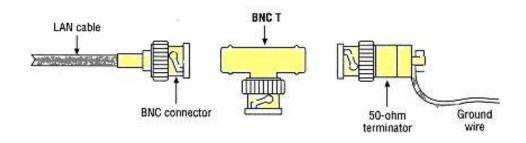
رقم التمرين: (٥ – ٢) الزمن المخصص: ٣ ساعات

اسم التمرين: التدريب على معرفة كيفية ربط شبكة محلية إيثرنت Ethernet نوع 10Base2

مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يكون الطالب قادراً على إنشاء وربط شبكة محلية إيثرنت نوع 10Base 2 تأنيا: التسهيلات التعليمية:


- ۱ ـ أجهزة حاسوب (عدد ۲) ذات أنظمة تشغيل ويندوز XP
- ٢ موصل محورى Coaxial مقاومته ٥٠ أوم وطوله ١٨٥ متراً
- ٣- بطاقة شبكة بقدر عدد أجهزة الحاسوب (تحتوي منفذ ربط BNC)
 - ٤- جهاز مكرر Repeaters) عدد ٢
 - ٥ ـ دفتر ملاحظات

ثالثا: خطوات العمل، النقاط الحاكمة، الرسومات

لغرض تطبيق هذا التصميم عملياً، نأخذ وصلات للربط الشبكي LAN Card تحتوي على فتحة للربط الشبكي من النوع BNC، ثم قم عزيزي الطالب بتثبيتها في الحواسيب في الفتحات الخاصة بها في اللوحات الأم ومن ثم قم بربطها مع بعضها البعض بالإضافة الى ربط باقي الأجهزة في الشبكة هذه وفق الملاحظات والمواصفات التالية حسب تسلسل أرقام الأجزاء المؤشرة في الرسم الموجود في الخطوة السابقة وكالآتي:

- ١ مقاومة النهايات الطرفية للسلك المحوري ذي قيمة ٥٠ أوم كما في الشكل أدناه.
 - ٢ أقل مسافة بين جهازي الحاسوب هي 0.5 متر.
- ٣ كل جهاز حاسوب يجب أن يربط بالكيبل الرئيس بواسطة كيبل محوري رفيع وصغير طوله لا يتجاوز
 ٤ سم
 - ٤ أقصى طول لقطعة الكيبل المحورى الرئيس يجب أن لا تتجاوز ١٨٥ متر.
- - قطعة الكيبل الواصلة بين الجهازين Repeaters يجب أن تكون مخصصة فقط لربط هذين الجهازين فقط دون غير هما.

بعد الانتهاء من ربط المكونات المادية، قم بتشغيل أجهزة الحواسيب وتحميل أنظمتها التشغيلية وتعريف الوصلات الخاصة بالربط الشبكي من خلال القرص المدمج المرفق مع الوصلة ومن ثم القيام بالعنونة اللازمة لكل وصلة في جهاز حاسوب بالشبكة ونقصد به إعطاء عنوان IP لكل وصلة في كل جهاز حاسوب ، فمثلاً إذا كان العنوان IP في الوصلة الأولى في الجهاز الأولى ١٩٢,١٦٨,١٠٠,١ فأن الـ IP للوصلة الثانية في الجهاز الثاني هو ١٩٢,١٦٨,١٠٠,١ وهكذا.

المناقشة

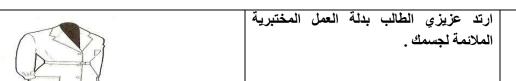
- ماهى فائدة ومساوئ هذا الربط؟
- ما تأثير زيادة عدد الحواسيب المربوطة بالسلك الناقل الرئيس لهذا النوع من الربط؟
 - لماذا لا يتم ربط حواسيب في قطعة الكيبل الرابطة للـ Repeaters ؟
- لماذا يتم اختيار الـ Repeaters في هذا الربط ؟ وهل بالإمكان اختيار Switches أو Switches بدلاً من الـ Repeaters

U	استمارة قائمة الفحص					
	الفاحصة:	الجهة				
المرحلة:	طانب:	اسم الد				
	ص:	التخص				
	تمرین:	اسم الذ				
الدرجة درجة الملاحظات القياسية الأداء	الخطوات	الرقم				
%0	ارتداء بدلة العمل	١				
%10	مراحل تثبيت وربط وصلات الربط الشبكي وفق التصميم الموجود في التمرين الذي يمثل أحد أنواع ربط الإيثرنت نوع 10Base 2	۲				
%10	مراحل تحقيق الربط الشبكي وعمل الحواسيب بصورة شبكة وتحقيق الإرسال والاستقبال	٣				
%1.	المناقشة	٤				
% 0	الزمن المخصص	٥				
	2.3	المجمو				
التوقيع	فاحص	اسم الأ				
	ð	التاريخ				

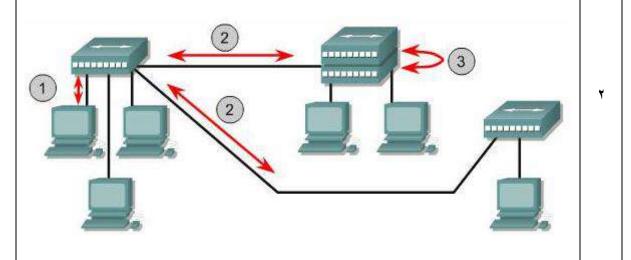
رقم التمرين: (٥ – ٣) الزمن المخصص: ٣ ساعات

اسم التمرين: التدريب على معرفة كيفية ربط شبكة إيثرنت Ethernet نوع 10BaseT

مكان التنفيذ: مختبر شبكات الحاسوب


أولا: الأهداف التعليمية:

إن يكون الطالب قادراً على إنشاء وربط شبكة محلية إيثرنت نوع 10Base T أنيا: التسهيلات التعليمية:


- ١- أجهزة حاسوب (عدد ٦) ذات أنظمة تشغيل ويندوز XP
- ٢ ـ سلك مجدول بأطوال (١٠٠ ـ ١٠٠) متر عدد ٦ (يربط الحواسيب بالمجمعات Hubs
 - ٣- بطاقة شبكة بقدر عدد أجهزة الحاسوب (تحتوي منفذ ربط RJ45)
 - ٤ جهاز مجمع Hub (عدد ٤)
 - ٥ ـ دفتر ملاحظات

١

ثالثا: خطوات العمل، النقاط الحاكمة، الرسومات

أنظر عزيزي الطالب إلى التصميم أدناه والذي يمثل تصميم لشبكة محلية بسيطة تتكون من عدد من الحواسيب (ليكن عدد الحواسيب الكلي ستة)، المراد ربط هذه الحواسيب شبكياً بهيئة إيثرنت نوع T 10Base وباستخدام السلك المجدول.

لغرض تطبيق هذا التصميم عملياً ، نأخذ وصلات للربط الشبكي LAN Card تحتوي على فتحة للربط الشبكي من النوع RJ45 ، ثم قم عزيزي الطالب بتثبيتها في الحواسيب في الفتحات الخاصة بها في اللوحات الأم ومن ثم قم بربطها مع بعضها البعض بالإضافة إلى ربط باقي الأجهزة في الشبكة هذه وفق الملاحظات والمواصفات الفنية التالية حسب تسلسل أرقام الأجزاء المؤشرة في الرسم الموجود في الخطوة السابقة وكالآتى:

- ا ـ طول قطعة السلك المجدول UTP الذي يربط كل جهاز حاسوب مع المجمع Hub وكذلك الحال بالنسبة إلى القطعة الرابطة بين المجمعات Hubs أيضا يجب أن يكون طولها بين (١٠٠ ١٠١) متر
 - ٢ كل جهاز مجمع Hub يحتوي على عدد منافذ ربط مناسبة للأجهزة المربوطة بكل مجمع Hub.
 - ٣ المجمعان Two Hubs المربوطان معاً يمثلان مجمعاً واحداً.

بعد الانتهاء من ربط المكونات المادية ، قم بتشغيل أجهزة الحواسيب وتحميل أنظمتها التشغيلية وتعريف الوصلات الخاصة بالربط الشبكي من خلال القرص المدمج المرفق مع الوصلة ومن ثم القيام بالعنونة اللازمة لكل وصلة في جهاز حاسوب ، فمثلاً إذا لكل وصلة في كل جهاز حاسوب ، فمثلاً إذا كان العنوان IP في الوصلة الأولى في الجهاز الأول 192.168.100.1 فأن الـ IP للوصلة الثانية في الجهاز الثاني هو 192.168.100.2 و هكذا.

المناقشة:

٣

- ماهى فائدة ومساوئ هذا الربط؟
- ما تأثير زيادة عدد الحواسيب المربوطة مجمع Hub لهذا النوع من الربط؟
- لماذا يتم اختيار الـ Hub في هذا الربط ؟ وهل بالإمكان اختيار Switches أو Routers بدلاً من الـ Hub؟
 - ما الغاية من ربط هذا العدد من الـ Hubs؟
 - ما الفائدة الفنية من ربط المجمعان معاً Two Hubs?

ة الفحص	استمارة قائمة
	الجهة الفاحصة:
المرحلة:	اسم الطالب:
	التخصص:
	اسم التمرين:

الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم
		% 0	ارتداء بدلة العمل	١
		%10	مراحل تثبيت وربط وصلات الربط الشبكي وفق التصميم الموجود في التمرين الذي يمثل أحد أنواع ربط الإيثرنت نوع 10Base T	4
		%10	مراحل تحقيق الربط الشبكي وعمل الحواسيب بصورة شبكة وتحقيق الإرسال والاستقبال	٣
		%1.	المناقشة	ź
		0/0 0	الزمن المخصص	0
المجموع				
اسم الفاحص			اسم الأ	
		1	ć	التاريخ

رقم التمرين: (5-2) ساعات

اسم التمرين: ربط شبكة إيثرنت باستخدام جهاز المبدل

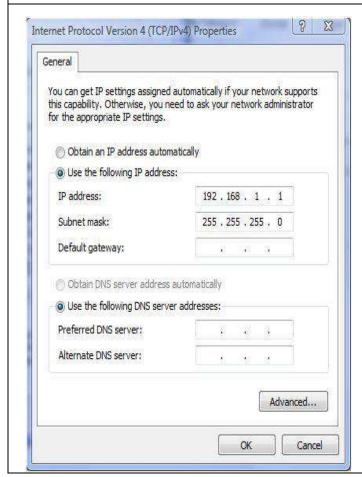
مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يتعرف الطالب على ربط شبكة إيثرنت من نوع (100BaseTx) بالاعتماد على جهاز المبدل.

ثانيا: التسهيلات التعليمية:

- ۱ ـ أجهزة حاسوب تحتوي على نظام تشغيل (Windows).
 - 2- جهاز مبدل (Switch).
 - ٣- أسلاك توصيل نوع الثنائي المجدول (UTP).
 - ٤ ـ دفتر ملاحظات.


ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات.

لإنشاء شبكة أيثرنت بالاعتماد على جهاز المبدل بتوجب عليك عزيزي الطالب أيصال كل جهاز حاسوب بجهاز المبدل بأستخدام اسلاك التوصيل المجدولة (UTP) من النوع المباشر (Straight).

يتم توصيل أحد طرفي السلك بالحاسوب عبر منفذ بطاقة الربط الشبكي (NIC) من جهة وتوصل الجهة الأخرى بأحد منافذ المبدل، ستلاحظ عزيزي الطالب بعد ذلك توهج ضوء الموجود أعلى ذلك المنفذ دلالة على حصول عملية الربط الفيزيائي بين الجهازين.

بعد ذلك قم عزيزي الطالب بتعريف عنوان (IP address) لكل جهاز حاسوب وليكن عنوان الحاسوب الاول ١٩٢,١٦٨,١,١ وعنوان الحاسوب الثانى ١٩٢,١٦٨,١,٢

وللتأكد من عملية الاتصال بين الحاسوبين قم بأتباع الخطوات التالية في أحدى الحواسيب: من قائمة أبدء (Start) أضغط على تنفيذ (Run) ومن ثم أكتب (cmd) لفتح النافذة أدناه أكتب الامر (Ping) ثم عنوان الحاسوب الثاني وكما موضح في الشكل أدناه: _ 🗆 x C:\WINDOWS\system32\cmd.exe Reply from 192.168.1.2: bytes=32 time<1ms TTL=128 Ping statistics for 192.168.1.2: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms C:\Documents and Settings\cisco8>ping 192.168.1.1 Pinging 192.168.1.1 with 32 bytes of data: Reply from 192.168.1.1: bytes=32 time<1ms TTL=128 Ping statistics for 192.168.1.1: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = Oms, Maximum = Oms, Average = Oms C:\Documents and Settings\cisco8> كما وتشير أيقونة الحاسوب في شريط المهام الى حدوث الاتصال بين الحواسيب. 🦷 start untifled - Paint CX C:(WINDOW5(syste...

المناقشة

٥

- ماهو الهدف الرئيس من إستخدام الجهاز المبدل Switch؟
- ناقش العوارض الفنية التي من الممكن أن تحدث عند إستخدام الجهاز المبدل؟

استمارة قائمة الفحص					
الفاحصة:					
	اسم الطالب: التخصص:	لمرحلة:	مرحلة:		
تمرين:	اسم التمرين:				
الدرجة درجة المحطوات الخطوات الأداء	الرقم الخد			الملاحظات	
أعداد السلك المزدوج المجدول نوع المباشر ٥%	١ أعداد السلك المزدوج المج	% 5			
أيصال الأسلاك بالمبدل وبالحواسيب	٢ أيصال الأسلاك بالمبدل وب	% 5			
تعريف العناوين للحواسيب ٥١%	٣ تعريف العناوين للحواسيب	%10			
اختبار الاتصال بين الحواسيب	٤ اختبار الاتصال بين الحواه	%10			
أنجاز العمل ضمن الوقت المحدد	• أنجاز العمل ضمن الوقت ا	%1.			
وع					
فاحص					
	التاريخ				

٥-٥ الشبكات اللاسلكية

بعد دراستنا للأنواع المختلفة من الشبكات وطرق ربطها باستخدام مختلف طرق الربط السلكي لابد من الإشارة إلى ان هنالك نوع اخر من الشبكات والتي تعتمد على الربط اللاسلكي كوسيلة لنقل البيانات بين حواسيب الشبكة. نستعرض خلال الجزء الأخير من هذا الفصل الفكرة العامة للشبكات اللاسلكية وألية تطبيقها وأهم الأجهزة المستخدمة لربط هذا النوع من الشبكات، وسنترك بقية التفاصيل الخاصة بالشبكات اللاسلكية لتتعرف عليها عزيزي الطالب خلال دراستك في المراحل اللاحقة.

أن المقياس المتبع في الشبكات اللاسلكية هو (IEEE 802.11) أما معيار الشبكات اللاسلكية الموازي للشبكات السلكية المحلية فيطلق عليه واي- فاي (Wi-Fi) وهو معيار لاسلكي لربط الأجهزة الإلكترونية مثل جهاز الكمبيوتر الشخصي والحواسيب المحمولة وأجهزة الألعاب الشخصية و الهواتف الذكية مثل PDA وتمكننا هذه التكنولوجيا من الاتصال بالإنترنت عند وجود نقطة ولوج أو ما يسمي بالنقاط الساخنة (Hot Spot).

IEEE 802.11TM WIRELESS LOCAL AREA NETWORKS The Working Group for WLAN Standards

أن أهمية الشبكات اللاسلكية يمكن تلخيصها بالنقاط التالية:

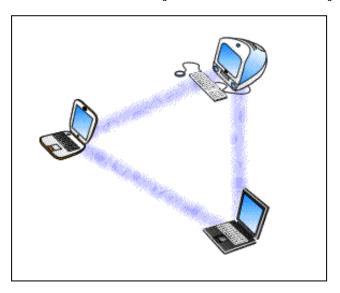
١ - سهولة النقل:

مثل الهاتف المحمول، يتيح لك الكمبيوتر المحول أو كمبيوتر الجيب أن تتصل بالشبكة من أي مكان و لن تكون مضطرا إلى الجلوس على مكتب ثابت أمام الكمبيوتر المكتبى.

٢ - سهولة التثبيت:

لا تتطلب منك الشبكات اللاسلكية تمرير كم كبير من الأسلاك بين أجهزة الكمبيوتر وهي عملية تتطلب قضاء ساعات طويلة في تمرير الكابلات عبر الجدران وبطول الحائط.

٣ - اتساع منطقة التغطية:


يمكن أن تغطي إشارة الشبكة اللاسلكية مساحة واسعة . على سبيل المثال إذا كنت تضع كمبيوتر في حجرة أو على سطح المنزل فإنك تستطيع توصيله بالشبكة اللاسلكية وبالتالي تتصل بأجهزة الكمبيوتر الأخرى الموجودة في داخل المنزل وتتشارك معها في الملفات والطابعات واتصال الإنترنت.

٥-٥-١ أنواع الشبكات اللاسلكيــة

هناك نوعان من التشبيك اللاسلكي:

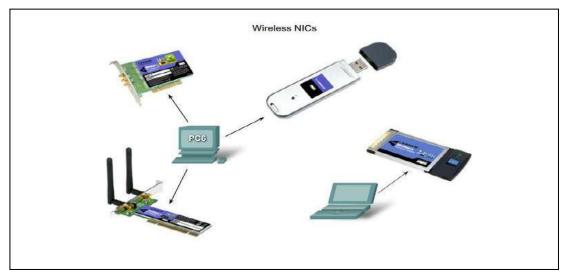
۱ - الشبكات الخاصة Ad - Hoc

وهي شبكة لاسلكية بسيطة تقوم على الاتصال بين حاسوبين أو أكثر بالاعتماد على بطاقة الاتصال الشبكي اللاسلكية (WLAN Card). وهذه الشبكة تستطيع حواسيبها الاشتراك في الملفات والطباعة ولكن لا تستطيع الدخول من خلال هذه الشبكة إلى شبكة سلكية محلية (Ethernet LAN) إلا في حالة كون أحد الحواسيب في الشبكة اللاسلكية قد رُبط في شبكة سلكية محلية باستخدام برامج خاصة.

شكل (٥-٥١) شبكة لاسلكية خاصة (Ad-Hoc)

(Infrastructure) - شبكات البنية التحتية

تقوم هذه الشبكة على أساس ربط أكثر من حاسوب لاسلكياً باستخدام جهاز ربط مركزي مشابه لأجهزة الربط الشبكي في الشبكات السلكية (المبدل، المجمع المركزي، الموجه) ولكن يعمل لاسلكياً. أن من أهم أجهزة الربط المركزي اللاسلكية هي نقاط الوصول (Access Point) والموجهات اللاسلكية (Wireless Router).


أن من أهم ما يميز هذا النوع من الشبكات هو إمكانية استغلال نقاط الوصول اللاسلكية كجسر (Bridge) بين الشبكة اللاسلكية والشبكة السلكية وبذلك تسمح بالوصول لمصادر الشبكة المحلية السلكية. هذا بالإضافة طبعاً إلى ان استخدام نقاط الوصول يزيد من عدد المستخدمين للشبكة في وقت واحد.

٥-٥-٢ مكونات الشبكة اللاسلكية

تتألف الشبكة اللاسلكية من المكونات التالية:

أ - بطاقة الربط الشبكي اللاسلكي (Wireless LAN Card)

تكون بطاقة الربط الشبكي مثبتة داخل جهاز الحاسوب المكتبي أو المحمولة، كما ويمكن الاستعانة بأجهزة ربط لاسلكي خارجية مثل المودم (USB Modem) وبطاقة (PCMCI)

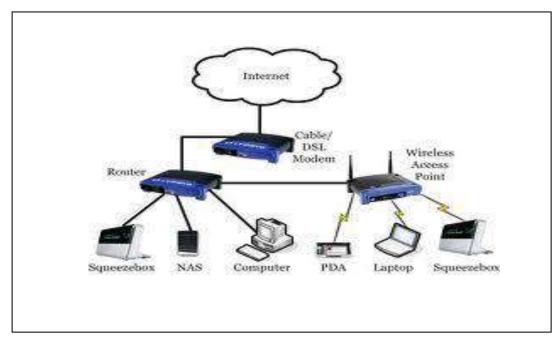
شكل (٥-١٦) بطاقات الربط الشبكي اللاسلكي

ب -نقاط الوصول اللاسلكية (Wireless Access Points)

تشكّل نقطة الوصول "مجمّعاً" لاسلكياً يربط النقاط اللاسلكية ببعضها البعض كما يقوم أيضاً بربطها مع الشبكة السلكية، من الممكن أن تربط مجموعة من نقاط الوصول ببعضها البعض وفق ترتيب معين لبناء شبكة لاسلكية كبيرة.

تقوم نقطة الوصول من وجهة نظر المستخدم اللاسلكي - أو الزبون - (مثل الحواسيب المحمولة أو المحطات النقالة) بتوفير سلك افتراضي يصل بين محطات المستخدمين. يربط هذا "السلك الافتراضي" محطات المستخدمين ببعضها البعض كما يربط هذه المحطات بالشبكة السلكية.

يجب التمييز بين نقطة الوصول والموجّهات اللاسلكية (Wireless Routers) والمنتشرة بكثرةٍ في الأسواق هذه الأيام. يتألف الموجّه اللاسلكي من نقطة وصول بالإضافة إلى موجّه للشبكة، لذلك فهو قادرٌ على القيام بمهام أكثر تعقيداً من تلك التي تقوم بها نقطة الوصول.


يتصل الزبائن بنقاط الوصول بعد معرفة "أسماء" هذه النقاط. يسمى هذا الأسلوب للتعريف بمعرّف مجموعة الخدمات (Service Set Identifier (SSID) والذي يجب أن يتشاركه جميع الأعضاء في شبكة لاسلكية محددة. ينبغي أن يتم إعداد جميع نقاط الوصول وزبائن الشبكة اللاسلكية الموجودين ضمن مجموعة خدمات موسّعة واحدة (SSID).

شكل (٥-١٧) أجهزة الربط الشبكي اللاسلكي

ج - زبائن الشبكة اللاسلكية (Wireless Clients)

زبون الشبكة اللاسلكية هو أي محطة لاسلكية تتصل بشبكة محلية لاسلكية لمشاركة مواردها. يتم تعريف المحطة اللاسلكية بأنها أيّ حاسوب يحتوي على بطاقة شبكة لاسلكية ترسل وتستقبل الإشارات الراديوية RF. من زبائن الشبكة اللاسلكية الشائعة الحواسب المحمولة، أجهزة الحواسب الكفيّة PDA، تجهيزات المراقبة اللاسلكية وهواتف نقل الصوت عبر بروتوكول الإنترنت VoIP اللاسلكية.

شكل (٥-٨١) زبائن الشبكة اللاسلكية

الزمن المخصص: ٣ ساعات

رقم التمرين: (5 - ٥)

اسم التمرين: ربط شبكة خاصة لاسلكية (Ad-Hoc)

مكان التنفيذ: مختبر شبكات الحاسوب

أولا: الأهداف التعليمية:

إن يتعرف الطالب على كيفية ربط شبكة لاسلكية بسيطة بين حاسوبين.

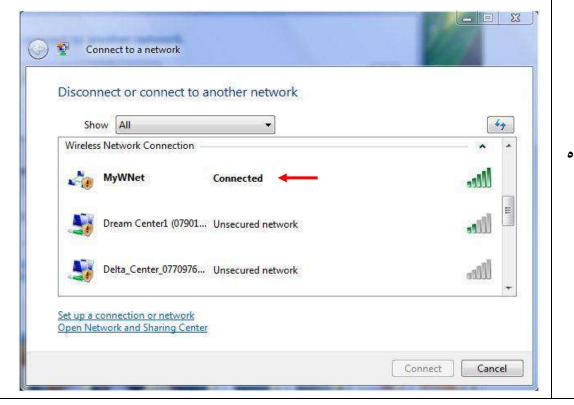
ثانيا: التسهيلات التعليمية:


۱ – أجهزة حاسوب تحتوى على بطاقة ربط لاسلكي (WLAN Card).

2- نظام تشغيل (Windows Vista) أو Windows 7

٣- دفتر ملاحظات.

ثالثًا: خطوات العمل، النقاط الحاكمة، الرسومات.


نختار أحد الحواسيب ومن قائمة السيطرة (Control Panal) نختار أحد الحواسيب ومن قائمة السيطرة (Center Control Panel > Network and Sharing Center - 49 Search 0 0 Tacks Network and Sharing Center View full map Manage wireless networks DR-MAHMOUD (This computer) Unidentified network (Public network) Customize Access Limited Connectivity View status Connections VMware Network Adapter VMnet1 VMware Network Adapter VMnet8 View status Sharing and Discovery Network discovery (o On File sharing 9 Public folder sharing On (read only, password required) 8 Printer sharing Off Password protected sharing o On 8 Media sharing o Off • Show me all the files and folders I am sharing Show me all the shared network folders on this computer

بعد الانتهاء من إعداد الشبكة اللاسلكية في الحاسوب الاول قم عزيزي الطالب من الحاسوب الثاني بالبحث عن أسم الشبكة المعدة وذلك بالضغط على أيقونة الشبكة في شريط المهام ومن ثم أختيار ربط الى شبكة (Connect to a network)

استمارة قائمة الفحص						
الجهة الفاحصة:						
المرحلة:				اسم الطالب: التخصص:		
اسم التمرين:						
الملاحظات	درجة الأداء	الدرجة القياسية	الخطوات	الرقم		
		% Y .	أعداد الحاسوب الأول	١		
		% Y .	أعداد الحاسوب الثاني	۲		
		%1.	أنجاز العمل ضمن الوقت المخصص	٣		
المجموع						
سم الفاحص				اسم الذ		
التاريخ						

أسئلة الفصل الخامس

س ١: ماهى أهم المفاهيم الأساسية لشبكات الإيثرنت؟

س٢: ماهى أنواع شبكات الإيثرنت؟

س٣: ماهى أهم المواصفات الفنية للنوع 10Base2؟

س ؛: ماهي أهم المواصفات الفنية للنوع 10Base5؟

سه: ماهي مزايا النوع 10BaseT؟

س٦: ماهي مزايا النوع 10BaseF؟

س٧: ما أقصى عدد ممكن من أجهزة الحواسيب يمكن ربطها على ناقل رئيس للنوع 10Base2؟

س ٨: إذا كان المراد ربط عدد كبير من أجهزة الحواسيب بربط شبكي نوع 10Base2 يزيد عن العدد المخصص لهذا النوع من الربط، فما هي التدابير الواجب اتخاذها لغرض ربط هذا العدد الزائد مع الحفاظ على المواصفات الفنية لهذا الربط؟

س ٩: ما الفرق بين الربط الشبكي من نوع 10Base2 والربط 10Base5؟

س ١٠: ما الفرق بين الربط الشبكي من النوع 10Base2 والربط 10BaseT؟

س ١١: ما الفرق بين الربط الشبكي من النوع 10BaseT والربط 10BaseF؟ وأيهما أفضل؟

س ٢: ماهي أهم مكونات الشبكة اللاسلكية؟

س١٣: ما فائدة نقطة الوصول اللاسلكية Wireless Access Point؟

س ٤١: ماذا نعنى بزبائن الشبكة اللاسلكية Wireless Clients؟

المصادر

- 1. Data Communication and Networking, 4th edition, Behrouz. Forouzan, 2007.
- 2. Data and Computer Communications, 6th edition, William Stalling, 2003.
- 3. Communication Networks, Leon Garcia, 2004.
 - ٤ دروس في شهادة (MCSE) ، الطبعة الأولى، أعداد د. وليد عودة، ٢٠٠٠.
 - ٥ -أساسيات شبكات الحاسوب، الطبعة الأولى، أعداد م. وائل أبراهيم الغنيمي، ٢٠٠٠.
 - ٦ تكنلوجيا شبكات الحاسوب، الطبعة الأولى، م. جعفر صادق الحسيني، ٢٠٠٤.
 - ٧ المختصر المفيد في شبكات الكمبيوتر، الطبعة الأولى، م. محمود يوسف أسعد، ٢٠٠٨.
 - www.abahe.co.uk . ، PC Networking مدسة الشبكات